On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2009

L. Urbas, P. Brne, B. Gabo, M. Barut, M. Strlič, T. Čerk Petrič, A. Štrancar

Journal of Chromatography A, 1216 (2009) 2689–2694

Human serum albumin (HSA) and immunoglobulin G (IgG) represent over 75% of all proteins present in human plasma. These high-abundance proteins prevent the detection of low-abundance proteins which are potential markers for various diseases. The depletion of HSA and IgG is therefore essential for further proteome analysis. In this paper we describe the optimization of conditions for selective depletion of HSA and IgG using affinity and pseudo-affinity chromatography. A Sartorius BIA Separations CIM (convective interaction media) Protein G disk was applied for the removal of IgG and the Mimetic Blue SA A6XL stationary phase for the removal of HSA. The binding and the elution buffer for CIM Protein G disk were chosen on the basis of the peak shape. The dynamic binding capacity was determined. It was shown to be dependent on the buffer system used and independent of the flow rate and of the concentration of IgG. Beside the binding capacity for the IgG standard, the binding capacity was also determined for IgG in human plasma. The Mimetic Blue SA A6XL column was characterized using human plasma. The selectivity of the depletion was dependent on the amount of human plasma that was loaded on the column. After the conditions on both supports had been optimized, the Mimetic Blue SA A6XL stationary phase was combined with the CIM Protein G disk in order to simultaneously deplete samples of human plasma. A centrifuge spin column that enables the removal of IgG and HSA from 20 μL of human plasma was designed. The results of the depletion were examined using sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis.

Purchase full article

Full view

A. Tscheliessnig, A. Jungbauer

Journal of Chromatography A, 1216 (2009) 2676–2682

High-performance monolith affinity chromatography employing protein A resins has been introduced previously for the fast purification of IgG from different sources. Here we describe the design and evaluation of a fast and specific method for quantitation of IgG from purified samples as well as crude supernatant from Chinese hamster ovary (CHO) cells. We used a commercially available affinity monolith with protein A as affinity ligand (CIM protein A HLD disk). Interferences of CHO host cell proteins with the quantitation of IgG from CHO supernatant were eliminated by a careful choice of the equilibration buffer. With this method developed, it is possible to quantify IgG within 5 min in a concentration range of 23–250 μg/ml. The calibration range of the method could be extended from 4 to 1000 μg/ml by adjusting the injection volume. The method was successfully validated by measuring the low limit of detection and quantification, inter- and intra-day precision and selectivity.

Purchase full article

Full view

J. Krenkova, A. Gargano, N. A. Lacher, J. M. Schneiderheinze, F. Svec

Journal of Chromatography A, 1216 (2009) 6824–6830

Poly(glycidyl methacrylate-co-ethylene methacrylate) monoliths have been prepared in 100 μm i.d. capillaries and their epoxy groups hydrolyzed to obtain poly(2,3-dihydroxypropyl methacrylate-co-ethylene methacrylate) matrix. These polymers were then photografted in a single step with 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylic acid to afford stationary phases for a strong and a weak cation exchange chromatography, respectively. Alternatively, poly(ethylene glycol) methacrylate was used for grafting in the first step in order to enhance hydrophilicity of the support followed by photografting with 2-acrylamido-2-methyl-1-propanesulfonic acid or acrylic acid in the second step. These new columns were used for the separation of proteins and peptides. A mixture of ovalbumin, α-chymotrypsinogen, cytochrome c, ribonuclease A and lysozyme was used to assess the chromatographic performance for large molecules while a cytochrome c digest served as a model mixture of peptides. All tested columns featured excellent mass transfer as demonstrated with very steep breakthrough curves. The highest binding capacities were found for columns prepared using the two step functionalization. Columns with sulfonic acid functionalities adsorbed up to 21.5 mg/mL lysozyme while the capacity of the weak cation exchange column functionalized with acrylic acid was 29.2 mg/mL.

Purchase full article

Full view

S. Yamamoto, M. Nakamura, C. Tarmann, A. Jungbauer

Journal of Chromatography A 1216 (2009) 2616-2620

Our previous study has shown that there is a good correlation between the number of charges of DNA (from trimer to 50-mer) and the number of binding sites B in electrostatic interaction chromatography (ion-exchange chromatography, IEC). It was also found that high salt (NaCl) concentration is needed to elute large DNAs (>0.6 M). In this paper we further performed experiments with large DNAs (up to 95-mer polyT and polyA) and charged liposome particles of different sizes (ca. 30, 50 and 100 nm) with a monolithic anion-exchange disk in order to understand the binding and elution mechanism of very large charged biomolecules or particles. The peak salt (NaCl) concentration increased with increasing DNA length. However, above 50-mer DNAs the value did not increase significantly with DNA length (ca. 0.65–0.70 M). For liposome particles of different sizes the peak salt concentration (ca. 0.62 M) was similar and slightly lower than that for large DNAs (ca. 0.65–0.70 M). The binding site values (ca. 25–30) are smaller than those for large DNAs. When arginine was used as a mobile phase modulator, the elution position of polyA and polyT became very close whereas in NaCl gradient elution polyT appeared after polyA eluted. This was mainly due to suppression of hydrophobic interaction by arginine.

Purchase full article

Full view

C. Delattre, M. A. Vijayalakshmi

Journal of Molecular Catalysis B: Enzymatic 60 (2009) 97–105

Recent research in the area of bioactive carbohydrates has shown the efficiency of oligosaccharides as signal molecules in a lot of biological activities. Newly observed functions of oligosaccharides and their abilities to act as specific regulatory molecules on various organisms have been more and more described. A successful development of these bioactive molecules in future needs efficient processes for specific oligosaccharides production. To exploit them for putative industrial scale up processes, two main strategies are currently investigated: the synthesis (chemical or bioconversion processes) and the polysaccharide cleavage (chemical, physical or biological processes). Nevertheless, if new manufacturing biotechnologies have considerably increased the development of these functional molecules, the main drawback limiting their biological applications is the complexity to engender specific glycosidic structures for specific activities. In the recent years, new enzymatic reactors have been developed, allowing the automatic synthesis of oligosaccharide structures. This review focuses on the knowledge in the area of bioactive oligosaccharides and gives the main processes employed to generate them for industrial applications with challenges of monolith microreactors.

Purchase full article

Full view

2008

P. Gagnon

MSS2008

When monoclonal antibodies were first beginning to be commercialized, expression levels over 100 mg/L were considered outstanding, and cell culture was viewed as the bottleneck in manufacturing productivity. Antibody expression levels now commonly exceed 1 g/L and reports of 10 and 15 g/L have been recently announced. Downstream processing is now considered the bottleneck.

In one sense, the bottleneck is artificial. Cell culture production takes about two weeks (not counting preparation of seed stock) and purification takes about a week. In another sense, the bottleneck is real, and a genuine concern. Process time for the protein A capture step from 20,000 L of cell culture supernatant (CCS) commonly requires 72-96 hours. This represents multiple cycles. The long hold time for IgG produced in the early cycles increases the risk of degradation by proteolysis, deamidation, etc. It also increases the risk of contamination.

Read full presentation

Full view

M. Ćurković Perica, I. Šola, L. Urbas, F. Smrekar, M. Krajačić

Journal of Chromatography A 1216 (2009) 2712-2716

A procedure based on Sartorius BIA Separations CIM DEAE anion-exchange chromatography was developed to separate double-stranded (ds) RNA of hypovirus infecting phytopathogenic fungus Cryphonectria parasitica. Using a linear gradient of 25 mM 4-morpholinepropanesulfonic acid (MOPS), pH 7.0 as a binding buffer, and 25 mM MOPS, 1.5 M NaCl, 0.1 mM EDTA, 15% isopropanol (v/v), pH 7.0 as an elution buffer, hypoviral dsRNA was additionally purified from nucleic acid species present in preparations partially purified by standard CF-11 cellulose chromatography. Moreover, crude phenol/chloroform extracts of the fungal tissue were also applied to monolithic supports and CIM DEAE chromatograms revealed clear evidence for hypoviral presence without CF-11 chromatography, nucleic acid precipitation, and electrophoresis.

Purchase full article

Full view

J. Ivancic-Jelecki, M. Brgles, M. Šantak, D. Forčić

Journal of Chromatography A 1216 (2009) 2717-2724

Human plasma is an important medical substance and a raw material for production of various therapeutics. During blood sampling, storage and processing, genomic DNA is released into plasma from nucleated blood cells that are damaged in the course of the procedure. In order to determine the concentration of contaminating DNA in plasma, we developed a method for DNA isolation by using anion-exchange chromatography on a Sartorius BIA Separations CIM (convective interaction media) diethylaminoethyl column. DNA was quantified by SYBR Green based real-time polymerase chain reaction. The concentration of cell-free, non-apoptotic DNA in plasma ranged between 0.06 and 22.5 ng/ml. As substantial volumes of plasma or whole blood are administered directly into the vascular system, a recipient is exposed to high amounts of cell-free DNA, several orders of magnitude higher than the amount found in other biologicals.

Purchase full article

Full view

C. Delattre, P. Michaud, M. A. Vijayalakshmi

Journal of Chromatography B, 861 (2008) 203–208

Fast production and purification of α-(1,4)-oligogalacturonides was investigated using a new enzymatic reactor composed of a monolithic matrix. Pectin lyase from Aspergillus japonicus (Sigma) was immobilized on CIM-disk epoxy monolith. Studies were performed on free pectin lyase and immobilized pectin lyase to compare the optimum temperature, optimum pH, and thermal stability. It was determined that optimum temperature for free pectin lyase and immobilized pectin lyase on monolithic support is 30 °C, and optimum pH is 5. Monolithic CIM-disk chromatography is one of the fastest liquid chromatographic method used for separation and purification of biomolecules due to high mass transfer rate. In this context, online one step production and purification of oligogalacturonides was investigated associating CIM-disk pectin lyase and CIM-disk DEAE. This efficient enzymatic bioreactor production of uronic oligosaccharides from polygalacturonic acid (PGA) constitutes an original fast process to generate bioactive oligouronides.

Purchase full article

Full view

2007

K. Isobe, Y. Kawakami

Journal of Chromatography A, 1144 (2007) 85-89(2007) 85-89

A convection interaction media (trade name CIM, Sartorius BIA Separation, Ljubljana, Slovenia) isobutyl monolithic disc was prepared by incubating a CIM epoxy monolithic disc with isobutylamine, and it was then applied to the purification of secondary alcohol dehydrogenase (S-ADH) and primary alcohol oxidase (P-AOD). Both enzymes were adsorbed on this column and eluted with high purity. Thus, S-ADH was purified to an electrophoretically homogeneous state by four column chromatographies using CIM DEAE-8 and CIM C4-8 tube monolithic columns, blue-Sepharose column and CIM isobutyl disc monolithic column. P-AOD was also purified to an electrophoretically homogeneous state by three column chromatographies of CIM DEAE-8 tube, CIM C4-8 tube and CIM isobutyl disc columns.

Purchase full article

Full view

E. Müller, C. Mann

Journal of Chromatography A, 1144 (2007) 30-39(2007) 30-39

The electro-acoustic effects, namely the ion vibration potential (IVP) and the colloidal vibration current (CVI), colloidal vibration potential (CVP) first described by P. Debye [P. Debye, J. Chem. Phys. 1 (1933) 13], are a result of charge separation of bound or free ions at different degrees by ultrasonic waves. Today commercial instruments are available to investigate liquid homogeneous and heterogeneous systems. In the present paper the application of this technique for the characterization of salts, protein solutions and resins for biochromatography is shown and valuable information about resins can be derived in a short time. Various resins were investigated with the following results: (1) the CVI magnitude is dependent of several parameters (such as particle size distribution, volume fraction, density difference); (2) the CVI is influenced by the surface modification of the resins. Polymeric modifications decrease the value of CVI. The CVI is generally lower for high capacity resins; (3) the measurement of the electro-acoustic effects can be used to detect small changes in resins. The CVI is dependent of the amount of adsorbed protein in “native” and denatured state.

Purchase full article

Full view

I. V. Kalashnikova, N. D. Ivanova, T. G. Evseeva, A. Yu. Menshikova, E. G. Vlakh, T. B. Tennikova

Journal of Chromatography A, 1144 (2007) 40–47(2007) 40–47

The subject of this paper is an investigation of the peculiarities of dynamic adsorption behavior of nanoparticles. For this purpose, virus-mimicking synthetic particles bearing different proteins at their outer surface were specially constructed using two approaches, e.g. the cross-linking of proteins and modification of polystyrene microsphere surface by proteins. Two chromatographic modes, namely ion-exchange and affinity liquid chromatography on ultra-short monolithic columns [Convective Interaction Media (CIM) DEAE and CIM QA disks] have been used as a tool for dynamic adsorption experiments. Such parameters as maximum adsorption capacity and its dependence on applied flow rate were established and compared with those obtained for individual proteins. Similarly to individual proteins, it was shown that the maximum of adsorption capacity was not changed at different flow rates. In addition, the permeability of porous space of used monolithic sorbents appeared to be sufficient for efficient separation of large particles and quite similar to the well-studied process applied for individual proteins.

Purchase full article

Full view

I.Vovk, B. Simonovska

Journal of Chromatography B, 849 (2007) 337-343

The most abundant isoforms of tomato pectin methylesterase (PME; EC 3.1.1.11; Mr 26 kDa), polygalacturonase (PG; EC 3.2.1.15; PG1 with Mr 82 kDa) and a basic protein with Mr 42 kDa and unknown function were isolated from fresh tomato fruit by a fast chromatographic procedure on a Convective Interaction Media (CIM®) short monolithic disk column bearing carboxymethyl (CM) groups. The extraction of the targeted enzymes with 1.2 M NaCl solution was followed by precipitation with ammonium sulfate at 60% of saturation, solubilisation of the pellet in 0.5 M NaCl and fractionation using a linear gradient from 0 to 700 mM NaCl. Among six fractions five had PME activity and four had PG activity, while one fraction containing a pure protein with Mr 42 kDa with neither of these activities. Two concentrated fractions, one with PG and one with PME were further purified. A linear gradient from 0 to 500 mM NaCl with 20% CH3CN in the mobile phase was used for the PG fraction and two CM disks and a linear gradient from 0 to 200 mM NaCl were used for the PME fraction as a greater capacity was necessary in this case. From 4 kg of fresh tomato flesh we obtained 22 mg of purified PME, 1.8 mg of purified, active PG1, 13.5 mg of additional basic protein and a fraction with PG2 contaminated by a PME isoform. Carboxymethyl CIM disk short monolithic columns are convenient for semi-preparative and analytical work with tomato fruit pectolytic enzymes.

Purchase full article

Full view

N. Delmotte, U. Kobold, T. Meier, A. Gallusser, A. Strancar, C. G. Huber

Anal Bioanal Chem (2007) 389:1065–1074

Immunoadsorbers based on 2.0 × 6.0 mm i.d., epoxy-bearing, methacrylate-based monolithic disks were developed in order to target myoglobin and N-terminal pro-natriuretic peptide (NT-proBNP), two biomarkers involved in cardiovascular disease. In both cases, antibodies were successfully coupled to the polymeric disk material. The developed immunoadsorbers permitted the selective isolation of myoglobin and NT-proBNP from human serum. Myoglobin was successfully isolated and detected from serum samples at concentrations down to 250 fmol μL-1. However, the affinity of the antibodies was not sufficient for the analysis of low-concentration clinical samples. Frontal analysis of anti-NT-proBNP disks revealed the ability of the immunoadsorber to bind up to 250 pmol NT-proBNP, which is more than sufficient for the analysis of clinical samples. Anti-NT-proBNP disks showed good stability over more than 18 months and excellent batch-to-batch reproducibility. Moreover, anti-NT-proBNP disks permitted the isolation of NT-proBNP at concentrations down to 750 amol μL−1 in serum, corresponding to concentrations of strongly diseased patients. Using reversed-phase trapping columns, the detection of NT-proBNP eluted from immunoadsorbers by mass spectrometry was achieved for concentrations down to 7.8 fmol μL-1.

Purchase full article

Full view

I. Vovk, B. Simonovska

Journal of Chromatography A, 1144 (2007) 90-96(2007) 90-96

An improved cation-exchange chromatographic procedure on Convective Interaction Media (CIM, Sartorius BIA Separations, Ljubljana, Slovenia) short monolithic methacrylate disk columns was used for the isolation of salt-independent pectin methylesterase (PME; EC 3.1.1.11) isoform and endo-polygalacturonase PG1 (PG, EC 3.2.1.15) from ripe tomato fruit extract after studying the chromatographic conditions including type of disk, binding buffer, pH, eluent composition and different gradients. Between 10 and 20 μg of proteins gave reliable chromatograms. Both carboxymethyl (CM) and sulfonyl (SO3) disks were equally suitable for the fractionation of tomato extract using the new gradient, but only CM disk was appropriate for further purification of the PME and PG fractions, and provided fast and sharp separation of proteins. The isolation of pure PG1 could be achieved only by addition of 20% of acetonitrile to the mobile phase. About 200 μg of proteins were loaded at one chromatographic run at the fractionation and purification. Determination of the molecular weights of the separated proteins showed that dimer of salt-independent PME isoform was formed in concentrated solutions of the enzyme but dissociated upon dilution of the solution. From 6 kg of fresh tomato flesh, 28 mg of purified salt-independent PME, 12.5 mg of purified and active PG1 and 4 mg of PG2 fraction contaminated with salt-dependent PME isoform were obtained by means of semi-preparative chromatography on CIM disks.

Purchase full article

Full view

D. Josić, J. G. Clifton

Journal of Chromatography A, 1144 (2007) 2-13

An overview on the utilization of monoliths in proteomics technology will be given. Both silica- and polymer-based monoliths have broad use for microseparation of tryptic peptides in reversed-phase (RP) mode before identification by mass spectrometry (MS) or by MS/MS. For two-dimensional (2D) LC separation of peptides before MS or MS/MS analysis, a combination of ion-exchange, usually cation-exchange (CEX) chromatography with RP chromatography on monolithic supports can be employed. Immobilized metal ion affinity chromatography monoliths with immobilized Fe3+-ions are used for the isolation of phosphopeptides. Monoliths with immobilized affinity ligands are usually applied to the rapid separation of proteins and peptides. Miniaturized reactors with immobilized proteolytic enzymes are utilized for rapid on- or offline digestion of isolated proteins or protein mixtures prior to identification by LC–MS/MS. Monoliths also have broad potential for application in sample preparation, prior to further proteomic analyses. Monolithic supports with large pore sizes can be exploited for the isolation of nanoparticles, such as cells, organelles, viruses and protein aggregates. The potential for further adoption of monolithic supports in protein separation and enrichment of low abundance proteins prior to proteolytic digestion and final LC–MS/MS protein identification will be discussed.

Purchase full article

Full view

P. Brne, A. Podgornik, K. Benčina, B. Gabor, A. Štrancar, M. Peterka

Journal of Chromatography A , 1144 (2007) 120-125

Certain diagnostic, analytical and preparative applications require the separation of immunoglobulin G (IgG) from immunoglobulin M (IgM). In the present work, different ion-exchange methacrylate monoliths were tested for the separation of IgG and IgM. The strong anion-exchange column had the highest dynamic binding capacity reaching more than 20 mg of IgM/ml of support. Additionally, separation of IgM from human serum albumin, a common contaminant in immunoglobulin purification, was achieved on the weak ethylenediamino anion-exchange column, which set the basis for the IgM purification method developed on convective interaction media (CIM) supports. Experiments also confirmed flow independent characteristics of the short monolithic columns.

Purchase full article

Full view

C. K. Zacharis, E. A. Kalaitzantonakis, A. Podgornik, G. Theodoridis

Journal of Chromatography A, 1144 (2007) 126–134

In this study, sequential injection affinity chromatography was used for drug–protein interactions studies. The analytical system used consisted of a sequential injection analysis (SIA) manifold directly connected with convective interaction media (CIM) monolithic epoxy disks modified by ligand-immobilization of protein. A non-steroidal, anti-inflammatory drug, naproxen (NAP) and bovine serum albumin (BSA) were selected as model drug and protein, respectively. The SIA system was used for sampling, introduction and propulsion of drug towards to the monolithic column. Association equilibrium constants, binding capacity at various temperatures and thermodynamic parameters (free energy ΔG, enthalpy ΔH) of the binding reaction of naproxen are calculated by using frontal analysis mathematics. The variation of incubation time and its effect in on-line binding mode was also studied. The results indicated that naproxen had an association equilibrium constant of 2.90 × 106 M-1 at pH 7.4 and 39 °C for a single binding site. The associated change in enthalpy (ΔH) was −27.36 kcal mol-1 and the change in entropy (ΔS) was −73 cal mol-1 K-1 for a single type of binding sites. The location of the binding region was examined by competitive binding experiments using a biphosphonate drug, alendronate (ALD), as a competitor agent. It was found that the two drugs occupy the same class of binding sites on BSA. All measurements were performed with fluorescence (λext = 230 nm, λem = 350 nm) and spectrophotometric detection (λ = 280 nm).

Purchase full article

Full view

K. Benčina, M. Benčina, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1160 (2007) 176–183

The chromatography of mechanically sensitive macromolecules still represents a challenge. While larger pores can reduce the mechanically induced cleavage of large macromolecules and column clogging, the column performance inevitably decreases. To investigate the effect of pore size on the mechanical degradation of DNA, column permeability and enzyme biological activity, methacrylate monoliths with different pore sizes were tested. Monolith with a 143 nm pore radius mechanically damaged the DNA and was clogged at flow rates above 0.5 ml min−1 (26 cm h−1). For monoliths with a pore radius of 634 nm and 2900 nm, no mechanical degradation of DNA was observed up to 5 ml min−1 (265 cm h−1) above which the HPLC itself became the main source of damage. A decrease of a permeability appeared at flow rate 1.8 ml min−1 (95 cm h−1) and 2.3 ml min−1 (122 cm h−1), respectively. The effect of the pore size on enzyme biological activity was tested with immobilized DNase and trypsin on all three monoliths. Although the highest amount of enzyme was immobilized on the monolith with the smallest pores, monolith with the pore radius 634 nm exhibited the highest DNase biological activity probably due to restricted access for DNA molecules into the small pores. Interestingly, specific biological activity was increasing with a pore size decrease. This was attributed to higher number of contacts between a substrate and immobilized ligand.

Purchase full article

Full view

S. Yamamoto, M. Nakamura, C. Tarmann, A. Jungbauer

Journal of chromatography 1144 (2007) 155-160

Linear gradient elution experiments were carried out on monolithic anion-exchange chromatography (AEC) with oligo-DNAs of various sizes (4–50mer, molecular weight MW = 1200–15,000) and compositions in order to investigate the retention mechanism. The binding site (B) values as well as the peak salt elution concentration IR values were determined. The B values determined for the monolithic AEC were similar to the values for non-porous AEC and porous AEC. The B value increased linearly with the number of charges (bases) of single-strand DNA when MW is less than ca. 3600 (12mer). When MW is greater than 6000, the slope of B versus MW decreased, and became very small at MW > 30,000. The IR value also increased linearly with MW for MW < 6000, and slightly with MW for MW > 10,000. It was shown that a very difficult separation of a single-strand 50mer poly(T) and a double-strand 50mer poly(A) and poly(T) was accomplished within 10 min by using a very shallow gradient at a high initial salt concentration (0.5 M) and a high flow-velocity (2.7 cm/min).

Purchase full article

Full view