Hydrazide-activated (HDZ) columns were proven to be a product of choice for making the most effective immunoaffinity columns. They take advantage of a special hydrazide linkage that binds antibodies through the carbohydrate residues on their Fc regions. This leaves the antigen-binding domains fully accessible to enable the most effective capture of desired target (Figure bellow).
CIMac™ HDZ monoliths make HDZ-immobilized antibody columns even more effective. Because of their large channel size and the efficiency of convective mass transport, they eliminate the long loading residence times that are required for affinity chromatography on porous particle columns. Flow rates of 5–10 column volumes per minute allow complete purifications in a few minutes, even when the source material contains a low concentration of antigen. The same performance is achieved whether a small peptide or a large bio-assemblage like a virus particle or extracellular vesicle is isolated. The combination of HDZ monoliths and the immobilization protocol offers a strong tool for fast antigen isolation from complex biological sample (plasma, lysate, etc.) and consequently sensitive antigen quantification. An example of CIMac™ HDZ application is a purification of fibrinogen from human plasma.

Attachments

There are many cases, where a single protein needs to be purified from a complex sample. Such proteins manifest themselves as impurities, which can affect further analysis, either by causing specific equipment malfunction or lower yield in the products. In other cases the specific protein is our molecule of interest, for example in glycomics analysis. In both cases high specificity for proteins, reproducibility and reliability is necessary. We have developed a model immunoaffinity column and 96-well plate based on an anti-fibrinogen monoclonal antibody, covalently immobilized onto CIMac™ analytical chromatographic monolith.

Attachments

Immunoaffinity columns using antibodies as ligands against mammalian proteins could be used for different applications in protein expression control and, if a standard available, for direct protein quantification in complex sample solutions. Additionally, these columns are ideal for polishing step of recombinant proteins, such as mammalian receptor Fc fusion proteins. Most importantly, such columns could extract a significant amount of a single membrane protein from native source, suitable for downstream analyses, such as mass spec analysis of their glycans. Immunoaffinity chromatographic monoliths against RAE-1 GPI anchored glycoprotein were developed (CIMmic HDZ-@RAE-1 column) as a part of Glycomet project with the main goal to analyze the antigen glycoprofile.

Attachments

This poster presents fully scalable non-affinity purification strategy that has been proven to be effective for all AAV serotype tested to date. Cell lysate is directly subjected to column purification after removal of cell debris without requiring a concentration step using tangential flow filtration. The process consists of three chromatographic steps. Hydrophobic interaction chromatography on a CIMmultus OH monolith is used for initial virus capture and purification. Precipitating salts are used at 1.0–2.0 M to achieve virus binding. Most of the small molecule contaminants and proteins are eliminated in the flow-through. AAV co-elutes with a highly reduced population of contaminating proteins. DNA-protein complexes are very strongly retained and require NaOH for removal. Intermediate polishing is performed with a CIMmultus SO3 cation exchange monolith. The AAV fraction from the capture step is titrated to a pH value of 3.5—5.0 and diluted to binding conditions. Sugars and surfactants are added to suppress non-specific interactions with tubing and containers, and the product is eluted in a salt gradient. Final polishing is conducted on a CIMmultus QA anion exchange monolith which separates empty capsids from full capsids. This is achieved in a salt gradient at alkaline pH. For more information please refer to BIA Application note A048 (www.biaseparations.com/applications).

Attachments

New vaccines against Influenza A are required each year to keep up with the most virulent evolving strains. This highlights a need for predictive analytical tools that can aid purification process development and validation. Rapid and reliable quantification of Influenza A virus is therefore of the utmost importance for enabling good yields and controlling the costs of the downstream processing. Here we demonstrate the ability of monolithic chromatography media to produce process predictive profiles that can document ability to remove impurities and obtain high product recoveries.

CIMac™ Analytical Columns are short bed high performance monolithic columns offering all the advantages of CIM® monolithic technology. Their small volume and short column length allow the operation at high volumetric flow rates enabling to receive the information about the product quantity and purity in just a few minutes. Hence, the CIMac™ Analytical Columns can be effectively used for the in-process and final control of various samples from different purification process steps.

Attachments

Preparative scale chromatographic separation of open-circular (oc) from supercoiled (sc) plasmid DNA (pDNA) isoforms has been already established on CIM® C4 with high ligand density (C4 HLD) monolithic columns with sample loading in 3.0 M ammonium sulphate (AS). The process requires high molarity of AS, increasing the overall cost of the process. Sample displacement chromatography (SDC) can be used as an alternative to decrease the AS concentration required during loading onto hydrophobic chromatographic supports. This study compares three chromatographic monoliths with different hydrophobic ligands on the surface (C4 HLD, pyridine and histamine) for the purification of different pDNA vectors in SD mode.

Attachments

PNGase F is an endoglycosidase commonly used for the selective release of N-glycans in glycan profiling. Alterations in the glycosylation pattern affects protein structure and function and has been correlated with several disease states. Assessment of the N-glycan profile - I.may shed light on the role of glycosylation in biological and pathological processes. - II.is required for the quality control of biotechnological drugs. Aim was to develop a PNGase F IMER that can be hyphenated with a LC-MS system for rapid and automated glycan analysis.

Immunoaffinity columns using antibodies as ligands against mammalian membrane proteins could be used for different applications in protein expresion control and, if a standard available, for concentration determination. Additionally these columns are ideal for polishing step of Fc fusion proteins of mammalian receptors

Most importantly such columns could extract a significant amount of a pure membrane mammalian protein suitable for structural analyses, such as mass spec analysis of their glycans. Immunoaffinity chromatographic monoliths against MULT-1 transmembrane and RAE-1 GPI anchored glycoproteins were developed as a part of Glycomet project with the main goal to analyze the antigen glycan parts.

Attachments

There are many cases, where a single protein needs to be purified from a complex sample. Such proteins manifest themselves as impurities, which can affect further analysis, either by causing specific equipment malfunction or lower yield in the products. In other cases the specific protein is our molecule of interest, for example in glycomics analysis. In both cases high specificity for proteins, reproducibility and reliability is necessary. We have developed a model immunoaffinity column and 96-well plate based on an anti-fibrinogen monoclonal antibody, covalently immobilized onto CIMac™ analytical chromatographic monolith.

Attachments

Since plasmid DNA (pDNA) as a pharmaceutical product has stringent requirements of purity and efficacy, one or more chromatographic steps are often used in the downstream processing train. High ligand density butyl-modified (C4 HLD) monolithic support is currently used in a polishing step of a pDNA purification process (1) and is mainly focused to supercoiled (sc) pDNA isoform separation from the open circular (oc) and linear pDNA isoform as well as for removal of remaining gDNA and RNA. The goal of the study was to compare the productivities of two variations of the polishing chromatographic process employing monoliths – classical bind-elute (BE) versus recently described (2) sample displacement purification (SDP). Classical purification requires high concentration of ammonium sulphate (AS) during loading step and elution is then achieved by descending AS gradient. SDP utilises different relative binding affinities of components in a sample mixture and separates pDNA isoforms under overloading conditions, where sc pDNA isoform acts as a displacer of oc or linear pDNA isoform.

Attachments

To ensure the desired chromatographic characteristics of the CIM® monolithic column at large scales, monolith microstructure morphology, pore size distribution, porosity and surface ligand density should be uniform. To demonstrate the uniformity of large chromatographic monoliths we have developed new testing procedures. By fabricating smaller columns (disks) from different random  positions of larger monolith, non-cGMP compliant chromatographic testing can be applied on the same polymerization batch without affecting the cGMP compliance of large-scale chromatographic monolith. Each individual disk was thoroughly tested and the results were compared to the properties of the large monolith.

Attachments

The reduction of downstream costs is one of the priorites of the efficient bioprocessing production line. Prolonging the chromatographic column useability results in less material expenses. An efficient way to prolong the life time of the anion-exchanging chromatographic monolith is decribed, when standard CIP procedure fails.

Attachments

The upstream and downstream monoclonal antibody (mAb) bioprocessing makes them susceptible to physical and chemical modifications. In the biotechnological production process of mAbs, structural variations may arise due to some enzymatic activity. Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity and cation-exchange chromatography (CEX) is one of the typical approaches for mAb charge variant analyses. We tested several CEX columns under different conditions and the best column for isotype separation was weak cation-exchanging CIMac COOH chromatographic monolith in pH gradient. We have proven a flow independent separation of mAb charge variants and in this way, a resolution comparable to classical CEX particulate-based analytical columns was achieved in only 6 min analysis time.

Attachments

Productivity of the downstream bioprocessing depends among others on the efficiency of chromatographic step. One of the crucial chromatographic parameters is dynamic binding capacity (DBC) for certain biomolecule. DBC could be tailored with changing the surface area of convective pores by tailoring the surface of pre-polymerized monoliths using graft or block polymerization of polymer brushes. Grafted CIM monoliths have already been prepared via Radical Polymerization (RP) and successfully characterized (1).

Recently, the implementation and optimization of Controlled Radical Polymerization (CRP) for grafting of large pore monoliths (average diameter 6 μm ) resulted in polymethacrylate-based ionic exchanger with at least 5 times higher DBC compared to non-grafted 6 μm monoliths, while preserving high permeability. The main goal of our study was to chromatographically characterize novel grafted ion-exchanging monoliths (CIM gDEAE and CIM gSO3) to see whether novel columns still retain flow independent chromatographic properties of non-grafted monoliths.

Attachments

Adeno-associated virus (AAV) vectors of various serotypes are considered to have high potential for gene therapy applications. Currently, manufacturing of AAV vectors faces the challenge of co-production of incompletely formed particles lacking a recombinant viral genome. Empty capsids increase the dose of total AAV administered for efficient transduction and are thought to cause unwanted immunological reactions against the virus.Removal of empty capsids during manufacturing, as well as analysis of empty/full AAV particle content is therefore a critical requirement for any AAV production process. This poster demonstrates how CIMmultus™ QA monolithic columns can be used to remove empty AAV capsids from the product chromatographically in a single step.

Attachments

Production of high value biological therapeutics usually involves complex manufacturing processes with high process variability. Additionally, development of robust and reliable bioprocesses can be challenging. PAT aims to enhance bioprocess understanding and implies a holistic approach to ensure that quality is built into products by design. Efficient PAT therefore calls for fast and robust analytical techniques which enables to asses high quality information about critical quality attributes and key performance indicators as parallel as possible to the manufacturing process. PATfinder™ is unique HPLC system for routine gradient separations that enables every analytical task. Equipped with bio-inert ceramic pump heads is deliberately tailored to meet the demands of analytical applications covering wide range of biomolecules. Highly sensitive and fast multi-wavelength detector enables to detect component peaks even in very fast gradients.

Attachments

CIMac™ r-Protein A Analytical Column is short bed, high performance monolithic column . Primarly is intended for fast, efficient, and reproducible qualitative and quantitative analyses of Immunoglobulin G (IgG). It is suitable for use with HPLC and UPLC systems. Quantification of Immunoglobulin G is possible between 0.2 μg and 20 μg. Its small volume and short column length allow operation at high volumetric flow rates ( up to 3mL/min). The information about product quantity and purity is thus generated in just 1 minute! The column has innovative symmetric design for bi-directional flow, also extending column lifetime.

Attachments

Methacrylate monoliths (CIM® monolithic columns) allow for very fast and efficient separations and exhibit very high binding capacities for extremely large bio-particles due to their large inner channel diameters and enhanced mass transfer characteristics.
Additionally, the ability to manufacture polymer monolithic materials ranging from analytical to large scale preparative/industrial columns has tremendous advantages. By ensuring the chromatographic properties are consistent over the whole size range, one can easily design and optimize a purification method on laboratory scale and transfer it to a production line with minimal to no additional modifications.

Until now the largest monolithic column had a volume of 8 L, which was large enough to serve the biopharmaceutics' market's needs. Now however, the capacity of that column is already at its upper limit.

By successfully employing the knowledge and experience from almost two decades of monolith production we have managed to overcome the size limitations and polymerize the largest convective chromatographic support made from one piece of material, a 40 L monolithic column.

Attachments

The demand for human immunoglobulin is invariably increasing on an annual basis. To satisfy demands, different manufacturing processes are used to isolate immunoglobulins from human plasma. A quest for alternative paths in manufacturing not only requires development of the most economical manufacturing process, but also a rapid method development and development of reliable analytics for manufacturing monitoring. For an efficient improvement of the purification methods as well as for in-process control during manufacturing stage, the usage of reliable and fast analytical techniques are of crucial importance.

Fast and reliable fingerprint-based method for characterization of immunoglobulin G (IgG) prepared from Cohn I+II+III paste in two chromatographic steps is presented. The fingerprint method bases on partial separation of proteins in linear gradient on CIMac QA 0.1 mL column. Partial separation of proteins does not allow simple quantitative analysis of the samples during the IgG production from Cohn I + II + III paste, however, a very accurate qualitative information about the composition of the sample can be obtained in less than 5 minutes.

Attachments

Enrichment of phosphopeptides prior to LC-MS analysis is a crucial sample preparation step because of their low stoichiometry in biological sample, longer retention on reversed phase columns, and lower ionization efficiency compared to non-phosphorylated peptides [1].The use of metal oxides, most prominently of TiO2 enabled efficient and relatively simple phosphopeptide-enrichment. In this study a new monolithic column from BIA Separations containing immobilized TiO2-nanoparticles was tested for its ability to enrich phosphopeptides. The TiO2-column was also tested for possible carryover originating from biological samples. In conclusion, tested monolithic TiO2 columns show significant binding ability for phosphopeptides and are considered as suitable for phosphopeptide enrichment.

Attachments