On May 12th, the biaseparations.com website will be retired and migrated to sartorius.com. Learn more about our combined offering today!
2021

The IVT reaction is one of the most expensive steps in mRNA production process and its optimization to reach high mRNA yield is of key importance Standard mRNA quantification techniques like absorbance and fluorescence based assays are time consuming and cannot be performed at line as the IVT reaction progresses In addition, other reaction components like nucleotides and pDNA interfere in the analytical results and reduce the method’s accuracy A new approach shown here uses CIMac PrimaS™ analytical HPLC column to separate and quantify several key IVT components with a very short run time, enabling fast “at line” tracking

Attachments

Full view

Optimizing processing steps in sc pDNA isolation is critical for obtaining good process yields as well as high product purity. HPLC with convective chromatography media (e.g. monolith) offers a rapid analytical method to characterize complex biomolecular mixtures and gives immediate feedback during process development. E coli lysis represents such a challenging step, where multiple critical quality attributes need to be identified and critical processing parameters optimized. This approach leads to better yields and product purity, allowing for simplified downstream steps. A new PATfix analytical HPLC platform presented here uses CIMac pDNA column, to separate and characterize plasmid from impurities, allowing for easy optimization of key parameters such as RNA removal.

Attachments

Full view

In mRNA production process, downstream purification of in vitro transcription (IVT) reaction often relies on precipitation methods which cannot provide resolution, recovery, or reproducibility to consistently produce a safe and effective product with good process economics. mRNA is a large biomolecule (mass of 1000 nt is ~ 150 kDa and >100 nm in diameter) for which porous particle chromatography lacks the ability to support high capacity and throughput to achieve good process economics. Convective flow chromatography media (e.g. monoliths) is an optimal platform for purification. A fully scalable chromatographic purification process is presented for a posttranscriptionally capped in vitro transcribedmRNA.

Attachments

Full view

2020

HPLC with convective chromatography media (e.g.monolith) offers a rapid analytical method to characterise complex mixtures. Transcription reaction used for production of mRNA represents such a mixture, with components varying in size, chemical and physical properties. A new analytical HPLC approach presented here uses CIMacPrimaS to separate IVT components such as triphosphate-nucleotides (NTPs), enzymes, DNA template and RNA in a very short gradient.

Attachments

Full view

Linearised pDNA is currently the starting point of In-Vitro-Transcription processes to synthesize mRNA. Large scale purification protocols for manufacturing of pDNA used for Gene Therapy applications typically include two chromatography steps. The first step captures both linear, open circular and supercoiled pDNA species. The polishing step enriches supercoiled pDNA, while discarding other isoforms. We describe a single-step-capture strategy to maximize the recovery of pDNA for further linearization.

Attachments

Full view

The increasing demand for messenger RNA (mRNA) as a therapeutic product requires larger production scales and more efficient extraction techniques. In this poster, fast and efficient way to purify poly-adenylated mRNA using affinity chromatography on CIMmultus™ Oligo dT column is presented.

The poly-adenylated tail of mRNA interacts with covalently bound oligo dT ligands in high-salt loading conditions, where electrostatic repulsion between negatively charged backbones of both, mRNA and oligo dT, are reduced and H-bonding in T-A base pair is emphasized. High salt concentration additionally screens out attractive electrostatic interactions between mRNA and other components in the process sample, thus facilitating aggregate reduction in purified product.

Attachments

Full view

2004

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3]. The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].
Anion-exchange CIM® (Convective Interaction Media) monolithic columns allow fast and flow unaffected separation of several biomolecules, including nucleic acids [5].

Attachments

Full view

2003

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA-based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods of GMO detection in food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods, for DNA isolation from food, cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anionexchange, ion-pair reverse-phased, and slalom chromatography. Of these, anionexchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view

1999

Synthetic oligonucleotides play an important role as novel therapeutic agents.

One of the most important, but also very time-consuming steps in synthetic oligonucleotides production is their purification. Due to their high-resolution power, reversed-phase and ion-exchange chromatography are the most widely used techniques for these purposes. For the reversed-phase separations oligonucleotides need to be kept as 5'-O-dimethoxytrityl derivatives until the purification process is completed and only then the detritylation takes place. Both these steps lower the yield of the production process. In the contrary, ion-exchange chromatography offers applications to deprotected oligonucleotides directly and that is the reason why this chromatography mode is more preferred.

Convective Interaction Media (CIM) are newly developed polymerbased monolithic supports allowing high resolution separations which can be carried out within seconds in the case of analytical units - disks. This is due to predominantly convective mass transport of biomolecules between the mobile and stationary phase and very low dead volumes. Additionally, the dynamic binding capacity is not affected by high flow rates.

In this work weak (DEAE) anion-exchange CIM supports have been successfully applied for the analysis and purification of synthetic oligonucleotides.

Attachments

Full view