On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2024

Marta Leban, Tina Vodopivec Seravalli, Martina Hauer, Ernst Böhm, Nina Mencin, Sandra Potušek, Andrej Thompson, Jurij Trontelj, Aleš Štrancar & Rok Sekirnik

Analytical and Bioanalytical Chemistry, March 2024

The recent clinical success of messenger RNA (mRNA) technology in managing the Covid pandemic has triggered an unprecedented innovation in production and analytical technologies for this therapeutic modality. mRNA is produced by enzymatic transcription of plasmid DNA (pDNA) using polymerase in a cell-free process of in vitro transcription. After transcription, the pDNA is considered a process-related impurity and is removed from the mRNA product enzymatically, chromatographically, or by precipitation. Regulatory requirements are currently set at 10 ng of template pDNA per single human dose, which typically ranges between 30 and 100 µg. Here, we report the development of a generic procedure based on enzymatic digestion and chromatographic separation for the determination of residual pDNA in mRNA samples, with a limit of quantification of 2.3 ng and a limit of detection of less than 0.1 ng. The procedure is based on enzymatic degradation of mRNA and anion exchange HPLC separation, followed by quantification of residual pDNA with a chromatographic method that is already widely adopted for pDNA quality analytics. The procedure has been successfully applied for in-process monitoring of three model mRNAs and a self-amplifying RNA (saRNA) and can be considered a generic substitution for qPCR in mRNA in-process control analytical strategy, with added benefits that it is more cost-efficient, faster, and sequence agnostic.

Read full article

Full view

Klemen Božič, Ajda Sedlar, Špela Kralj, Urh Černigoj, Aleš Štrancar, Rok Sekirnik

Biotechnology and Bioengineering, 2024, 1–11

High purity of plasmid DNA (pDNA), particularly in supercoiled isoform (SC), is used for various biopharmaceutical applications, such as a transfecting agent for production of gene therapy viral vectors, for pDNA vaccines, or as a precursor for linearized form that serves as a template for mRNA synthesis. In clinical manufacturing, pDNA is commonly extracted from Escherichia coli cells with alkaline lysis followed by anion exchange chromatography or tangential flow filtration as a capture step for pDNA. Both methods remove a high degree of host cell contaminants but are unable to generically discriminate between SC and open-circular (OC) pDNA isoforms, as well as other DNA impurities, such as genomic DNA (gDNA). Hydrophobic interaction chromatography (HIC) is commonly used as polishing purification for pDNA. We developed HIC-based polishing purification methodology that is highly selective for enrichment of SC pDNA. It is generic with respect to plasmid size, scalable, and GMP compatible. The technique uses ammonium sulfate, a kosmotropic salt, at a concentration selective for SC pDNA binding to a butyl monolith column, while OC pDNA and gDNA are removed in flow-through. The approach is validated on multiple adeno-associated virus- and mRNA-encoding plasmids ranging from 3 to 12 kbp. We show good scalability to at least 300 mg of >95% SC pDNA, thus paving the way to increase the quality of genomic medicines that utilize pDNA as a key raw material.

Read full article

Full view

2023

Špela Kralj, Špela Meta Kodermac, Ines Bergoč, Tomas Kostelec, Aleš Podgornik, Aleš Štrancar, Urh Černigoj

Electrophoresis. 2023; 1– 13

Increased need for plasmid DNA (pDNA) with sizes above 10 kbp (large pDNA) in gene therapy and vaccination brings the need for its large-scale production with high purity. Chromatographic purification of large pDNA is often challenging due to low process yields and column clogging, especially using anion-exchanging columns. The goal of our investigation was to evaluate the mass balance and pDNA isoform composition at column outlet for plasmids of different sizes in combination with weak anion exchange (AEX) monolith columns of varying channel size (2, 3 and 6 µm channel size). We have proven that open circular pDNA (OC pDNA) isoform is an important driver of reduced chromatographic performance in AEX chromatography. The main reason for the behaviour is the entrapment of OC pDNA in chromatographic supports with smaller channel sizes. Entrapment of individual isoforms was characterised for porous beads and convective monolithic columns. Convective entrapment of OC pDNA isoform was confirmed on both types of stationary phases. Porous beads in addition showed a reduced recovery of supercoiled pDNA (on an 11.6 kbp plasmid) caused by diffusional entrapment within the porous structure. Use of convective AEX monoliths or membranes with channel diameter >3.5 µm has been shown to increase yields and prevent irreversible pressure build-up and column clogging during purification of plasmids at least up to 16 kbp in size.

Download full article

Full view

Nejc Pavlin, Urh Černigoj, Mojca Bavčar, Tjaša Plesničar, Jan Mavri, Martin Zidar, Matevž Bone, Urška Kralj Savič, Tadej Sever, and Aleš Štrancar

Electrophoresis. 2023; 1– 11

High-performance liquid chromatography (HPLC)-based analytical assays are used to effectively monitor purity and quantity of plasmid DNA (pDNA) throughout the purification process. However, the phenomenon of physical entrapment of open circular (OC) isoforms pDNA inside narrow channels of chromatographic support decreases its accuracy and precision and the effect increases with pDNA size. The purpose of the study was to develop a chromatographic method for accurate analytical separation between isoforms of <16 kbp pDNA using weak anion exchanging monolithic column with large (6 µm) convective channels. Purified samples of 4.7 and 15.4 kbp large pDNA with known isoform composition were prepared and their isoforms separated in ascending salt gradient. Both OC and supercoiled (SC) isoforms were baseline separated at a flow rate below 0.5 mL min−1 in a guanidinium chloride (GdnCl) gradient with a ≥95% OC pDNA elution recovery. However, these chromatographic conditions increased 2 times the peak width for linear (LIN) pDNA isoform compared to the results using monoliths with 1.4 µm channel size. If other chaotropic agents, such as urea or thiocyanate (SCN), were added to Gdn ions, the elution volume for LIN isoform decreased. Optimization of combined GdnCl/GdnSCN gradient for pDNA elution resulted in a simple and robust chromatographic method, where OC–LIN and LIN–SC pDNA (up to 15 kbp size) were separated with resolution above 1.0 and above 2.0, respectively. The accessibility and general acceptance of anion exchange chromatography for pDNA analytics give the newly developed method a great potential for in-process control monitoring of pDNA production processes.

Download full article

Full view

Irena Trbojević-Akmačić, Frano Vučković,Tea Pribić, Marija Vilaj, Urh Černigoj, Jana Vidič, Jelena Šimunović, Agnieszka Kępka, Ivana Kolčić, Lucija Klarić, Mislav Novokmet, Maja Pučić-Baković, Erdmann Rapp, Aleš Štrancar, Ozren Polašek, James F. Wilson and Gordan Lauc 

Communications Biology volume 6, Article number: 312 (2023)

Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans’ role in their distinct physiological functions.

Download full article

Full view

2022

Katarina Markovič, Maja Cemazar, Gregor Sersa, Radmila Milačič and Janez Sčančar

Journal of Analytical Atomic Spectrometry

Ceruloplasmin (Cp) is the major copper-carrying (Cu) protein in human plasma. Due to copper's important physiological functions and its role in various diseases, there is a need to quantify the concentration bound to Cp and the exchangeable form of Cu. In the present work, conjoint liquid chromatography (CLC) on short-bed convective interaction media (CIM) monolithic disks was used to separate the Cu bound to low molecular mass (LMM) species, and the Cu bound to Cp and albumin (HSA) in human serum. Two immunoaffinity CIMmic albumin depletion (α-HSA) disks and one CIMmic weak anion-exchange diethylaminoethyl (DEAE) disk were assembled in a single housing, forming a CLC monolithic column. By applying isocratic elution with a 50 mmol L−1 MOPS buffer (pH 7.4) in the first 3 min, followed by gradient elution with 1 mol L−1 NH4Cl (pH 7.4) in the next 9 min, HSA was retained by the α-HSA disk, allowing subsequent separation of the LMM-Cu from the Cu bound to the Cp on the DEAE disk. Further elutio with 0.5 mol L−1 acetic acid in the next 4 min rinsed the HSA from the α-HSA disk. The separated Cu species were quantified by post column isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), while the elution profile of the proteins was followed by UV detection at 278 nm. Quantitative column recoveries were obtained. Good repeatability of the measurement was achieved for Cu-Cp (±1%), while for Cu-HSA and Cu-LMM species the repeatability of the measurements was slightly worse, due to the much lower Cu concentrations (±6% and ±9%, respectively). The developed method required only 20 μL of a 15-times diluted sample. Low limits of detection for the Cu-Cp, Cu-HSA and Cu-LMM species (6.1, 5.3 and 3.3 ng mL−1 Cu, respectively) were obtained. The technique was successfully applied in the determination of Cu-Cp, Cu-HSA and a fraction that most probably corresponds to the Cu-LMM species in the human serum of healthy individuals, kidney transplant patients and cancer patients.

Download full article

Full view

2021

by Nejc Pavlin, Blaž Bakalar, Janja Skok, Špela Kralj, Andreja Gramc Livk, and Aleš Štrancar

BioProcess International, October 2021

Abstract:

Plasmid DNA (pDNA) has become a crucial component in the production of next generation therapeutics such as messenger RNA (mRNA) and viral vectors.

As companies ramp up their production capabilities and move towards clinical applications, obtaining cGMP grade pDNA has become a production bottleneck, leading to lengthy production delays.

There is a growing market demand for solutions that can streamline the production of cGMP pDNA and help optimize down-stream processes (DSP) for better yields & purity.

The key step in this process is having quantifiably reliable analytics that give rapid results
for process optimization and scale-up, as well as production runs.

Establishing and expanding inhouse pDNA production platform in a quick and efficient manner will be a key differentiator between more and less successful next generation therapeutics projects.

Download full eBook

Full view

Urh Černigoj, Jana Vidič, Ana Ferjančič, Urša Sinur, Klemen Božič, Nina Mencin, Anže Martinčič Celjar, Pete Gagnon, Aleš Štrancar

Electrophoresis, September 2021. https://doi.org/10.1002/elps.202100210

Abstract:

Elution of strong and weak anion exchangers with sodium chloride gradients is commonly employed for analysis of sample mixtures containing different isomers of plasmid DNA. Gradient elution of a weak anion exchanger (diethylaminoethyl, DEAE) in the presence of guanidine hydrochloride (Gdn) roughly doubles resolution between open-circular (oc) and supercoiled (sc) isomers. It also improves resolution among sc, linear, and multimeric/aggregated forms. Sharper elution peaks with less tailing increase sensitivity about 30%. However, elution with an exclusively-Gdn gradient to 900 mM causes more than 10% loss of plasmid. Elution with a sodium chloride gradient while maintaining Gdn at a level concentration of 300 mM achieves close to 100% recovery of sc plasmid while maintaining the separation improvements achieved by exclusively-Gdn elution. Corresponding improvements in separation performance are not observed on a strong (quaternary amine) anion exchanger. Other chaotropic salts do not produce a favorable result on either exchanger, nor does the inclusion of surfactants or EDTA. Selectivity of the DEAE-Gdn method is orthogonal to electrophoresis, but with better quantification than agarose electrophoresis, better quantitative accuracy than capillary electrophoresis, and resolution approaching capillary electrophoresis.

Read full article.

Full view

Petrović T, Alves I, Bugada D, Pascual J, Vučković F, Skelin A, Gaifem J, Villar-Garcia J, Vicente MM, Fernandes Â, Dias AM, Kurolt IC, Markotić A, Primorac D, Soares A, Malheiro L, Trbojević-Akmačić I, Abreu M, Sarmento E Castro R, Bettinelli S, Callegaro A, Arosio M, Sangiorgio L, Lorini LF, Castells X, Horcajada JP, Pinho SS, Allegri M, Barrios C, Lauc G.

Glycobiology. 2020 Nov.

Abstract:

A large variation in the severity of disease symptoms is one of the key open questions in COVID-19 pandemics. The fact that only a small subset of people infected with SARS-CoV-2 develop severe disease suggests that there have to be some predisposing factors, but biomarkers that reliably predict disease severity have not been found so far. Since overactivation of the immune system is implicated in a severe form of COVID-19 and the IgG glycosylation is known to be involved in the regulation of different immune processes, we evaluated the association of inter-individual variation in IgG N-glycome composition with the severity of COVID-19. The analysis of 166 severe and 167 mild cases from hospitals in Spain, Italy and Portugal revealed statistically significant differences in the composition of the IgG N-glycome. The most notable difference was the decrease in bisecting Nacetylglucosamine (GlcNAc) in severe patients from all three cohorts. IgG galactosylation was also lower in severe cases in all cohorts, but the difference in galactosylation was not statistically significant after correction for multiple testing. To our knowledge, this is the first study exploring IgG N-glycome variability in COVID-19 severity.

Download full article

Full view

2020

U. Černigoj, A. Štrancar

DNA Vaccines. Methods in Molecular Biology, vol 2197, pp 167-192

Abstract

Purification of high-quality plasmid DNA in large quantities is a crucial step in its production for therapeutic use and is usually conducted by different chromatographic techniques. Large-scale preparations require the optimization of yield and homogeneity, while maximizing removal of contaminants and preserving molecular integrity. The advantages of Convective Interaction Media® (CIM®) monolith stationary phases, including low backpressure, fast separation of macromolecules, and flow-rate-independent resolution qualified them to be used effectively in separation of plasmid DNA on laboratory as well as on large scale. A development and scale-up of plasmid DNA downstream process based on chromatographic monoliths is described and discussed below. Special emphasis is put on the introduction of process analytical technology principles and tools for optimization and control of a downstream process.

Buy protocol

Full view

2019

Calef Sánchez-Trasviña, Marco Rito-Palomares, and José González-Valdez

Advances in Polymer Technology, Volume 2019, December 12 2019, 10 pages

Abstract

PEGylated or polyethylene glycol-modified proteins have been used as therapeutic agents in different diseases. However, the major drawback in their procurement is the purification process to separate unreacted proteins and the PEGylated species. Several efforts have been done to separate PEGylation reactions by chromatography using different stationary phases and modified supports. In this context, this study presents the use of chromatographic monoliths modified with polyethylene glycol (PEG) to separate PEGylated Ribonuclease A (RNase A). To do this, Convective Interaction Media (CIM) Ethylenediamine (EDA) monolithic disks were PEGylated using three PEG molecular weights (1, 10, and 20 kDa). The PEGylated monoliths were used to separate PEGylated RNase A modified, as well, with three PEG molecular weights (5, 20, and 40 kDa) by hydrophobic interaction chromatography. Performance results showed that Bovine Serum Albumin (BSA) can bind to PEGylated monoliths and the amount of bound BSA increases when ammonium sulfate concentration and flow rate increase. Furthermore, when PEGylated RNase A was loaded into the PEGylated monoliths, PEG-PEG interactions predominated in the separation of the different PEGylated species (i.e., mono and di-PEGylated). It was also observed that the molecular weight of grafted PEG chains to the monolith impacts strongly in the operation resolution. Interestingly, it was possible to separate, for the first time, isomers of 40 kDa PEGylated RNase A by hydrophobic interaction chromatography. This technology, based on PEGylated monoliths, represents a new methodology to efficiently separate proteins and PEGylated proteins. Besides, it could be used to separate other PEGylated molecules of biopharmaceutical or biotechnological interest.

Read full article

Full view

Katarina Marković, Radmila Milačič, Janja Vidmar, Stefan Marković, Katja Uršič, Martina Nikšić Žakeljc, Maja Cemazar, Gregor Sersa, Mojca Unk, Janez Ščančar

Journal of Trace Elements in Medicine and Biology, Volume 57, January 2020, Pages 28-39.

Abstract

Monolithic chromatography using convective interaction media (CIM) disks or columns can be used in the separation step of speciation analysis. When different monolithic disks are placed in one housing, forming conjoint liquid chromatography (CLC) monolithic column, two-dimensional separation is achieved in a single chromatographic run. Here, we assembled low-pressure (maximum 50 bar) CLC monolithic column, which consists of two 0.34 mL shallow CIM monolithic disks and high-pressure CLC column (maximum 150 bar) from 0.1 mL analytical high performance short bed CIMac monolithic disks. The data from analyses showed that both tested CLC monolithic columns gave statistically comparable results, with the low-pressure CLC column exhibiting better resolving power and robustness. Low-pressure CLC column exhibited greater potential than high-pressure CLC column, and can be thus recommended for its intended use in speciation analysis of metal-based biomolecules.

Keywords: low-pressure and high-pressure conjoint liquid chromatography, anion-exchange and affinity monolithic disks, inductively coupled plasma mass spectrometry, Pt-based chemotherapeutics, serum of cancer patients

Read full article

Full view

J. R. Lorsch, A. M. Munoz, J. S. Nanda, V. Rajagopal, P. Yourik, S. E. Walker

RNA Biology (2017), volume 14 (2), pp. 188–196.
Published online 2016 Dec 16.

In vitro studies of translation provide critical mechanistic details, yet purification of large amounts of highly active eukaryotic ribosomes remains a challenge for biochemists and structural biologists. Here, we present an optimized method for preparation of highly active yeast ribosomes that could easily be adapted for purification of ribosomes from other species. The use of a nitrogen mill for cell lysis coupled with chromatographic purification of the ribosomes results in 10-fold-increased yield and less variability compared with the traditional approach, which relies on sedimentation through sucrose cushions. We demonstrate that these ribosomes are equivalent to those made using the traditional method in a host of in vitro assays, and that utilization of this new method will consistently produce high yields of active yeast ribosomes.

KEYWORDS: Eukaryotic translation, in vitro translation, ribosome, ribosome purification, yeast

Read full article

Full view

Thanaporn Liangsupree, Evgen Multia, Jari Metso, Matti Jauhiainen, Patrik Forssén, Torgny Fornstedt, Katariina Öörni, Aleš Podgornik & Marja-Liisa Riekkola 

Scientific Reports, volume 9, August 2019

Low-density lipoprotein (LDL) is considered the major risk factor for the development of atherosclerotic cardiovascular diseases (ASCVDs). A novel and rapid method for the isolation of LDL from human plasma was developed utilising affinity chromatography with monolithic stationary supports. The isolation method consisted of two polymeric monolithic disk columns, one immobilized with chondroitin-6-sulfate (C6S) and the other with apolipoprotein B-100 monoclonal antibody (anti-apoB-100 mAb). The first disk with C6S was targeted to remove chylomicrons, very-low-density lipoprotein (VLDL) particles, and their remnants including intermediate-density lipoprotein (IDL) particles, thus allowing the remaining major lipoprotein species, i.e. LDL, lipoprotein(a) (Lp(a)), and high-density lipoprotein (HDL) to flow to the anti-apoB-100 disk. The second disk captured LDL particles via the anti-apoB-100 mAb attached on the disk surface in a highly specific manner, permitting the selective LDL isolation. The success of LDL isolation was confirmed by different techniques including quartz crystal microbalance. In addition, the method developed gave comparable results with ultracentrifugation, conventionally used as a standard method. The reliable results achieved together with a short isolation time (less than 30 min) suggest the method to be suitable for clinically relevant LDL functional assays.

Read full article

Full view

2018

The purpose of this book is to provide you with a guide to developing monoclonal antibody purification procedures taht meet the requirements of both research and commercial applications. It is based on successful purifications developed for over 250 monoclonal-based products, addressing a wide range of diagnostic and therapeutic applications. it is supported by nearly 1000 citations from the scientific literature and enriched by the insights of skilled practitioners from throught the industry. It incorporates over 100 figures and tables to illustrate key concepts.

Attachments

Full view

Miladys Limonta, Lourdes Zumalacarregui, Urska Vidic, Nika Lendero Krajnc

The main component of the Center for Genetic Engineering and Biotechnology (CIGB) candidate vaccine against Hepatitis C virus (HCV) is the pIDKE2 plasmid. The current designed downstream process for the production of pIDKE2 fulfils all regulatory requirements and renders the required quantities of pharamceutical-grade plasmid DNA (pDNA)with 95% purity. The advantages of this procedure include high plasmid purity and the elimination of undesirable additives. such as toxic organic extractants and animal-derived enzymes. However, yields and consequently the productivity of the process are low. Previous work demonstrated that the most critical step of the process is the reverse phase chromatography, where conventional porous particle resins are used. Therefore, to increase the process productivity alternative technologies such as membranes and chromatographic monoliths were tested as alternative options for this critical step. Here, a comparison between the behaviours of CIM® C4-HLD and Sartobind phenyl matrices was performed.

Attachments

Full view

2017

Marina Naldi, Urh Černigoj, Ales Štrancar, Manuela Bartolini

Reducing experimental variability, limiting contamination and increasing automation are essential goals in the development of reliable analytical platforms for mass spectrometry (MS)-based proteomics. In this work novel trypsin-based monolithic immobilized enzyme reactors (tryp-IMERs), obtained by covalent immobilization on convective interaction media (CIMac™) analytical columns (5 mm×5.2 mm I.D.), were developed. Notwithstanding the small dimensions, column format allowed the insertion in common high performance liquid chromatography (HPLC) systems, thus avoiding the use of expensive micro- or nano-platforms. Monolith pore diameter and surface chemistry were optimized to achieve high digestion efficiency even with high molecular weight proteins and to avoid protein/peptide adsorption, peak broadening and sample loss. A full characterization of the tryp-IMERs was undertaken to select the best protocol for preparation and type of trypsin. Optimization of the operational and storage conditions was carried out by an off-line approach. On-line studies were performed by setting a multidimensional analytical platform, which included the tryp-IMER, a trapping column, an analytical C4 column and a high resolution hybrid mass spectrometer (ESI-Q-TOF). In the optimized conditions rapid protein digestion (90 ± 9 s), high protein coverage (≥60%) and high score values were achieved for five selected sample proteins (cytochrome c, myoglobin and albumins from different sources) differing in molecular size, isoelectric point and accessibility to cleavage sites as well as for a protein mixture of 200 ng. The best performing tryp-IMERs showed high sensitivity down to the pmole level. The platform also resulted suitable for the analysis of high-molecular weight proteins such as a pool of human immunoglobulins G (hIgG) and for the high molecular weight fraction of human plasma proteins, which were digested in less than two minutes to an extent similar to that achieved by overnight incubation in a classical in solution protocol. Finally, underestimated key procedural issues were also highlighted during the study. Such aspects are of general interest both for tryp-IMER users and tryp-IMER developers.

Purchase full article

Full view

Sebastijan Peljhan, Tina Jakop, Dunja Šček, Vid Skvarča, Blaž Goričar, Romina Žabar, Nina Mencin. Electrophoresis 2017 July 20

The plasma-derived IgG used either for diagnostic purpose or intravenous application (in form of IVIG) in various medical therapies is certainly gaining more and more attention on annual basis. Different manufacturing processes are used to isolate immunoglobulins from human plasma. However, a quest for alternative paths in IgG isolation not only requires development of the most efficient isolation process, but also a rapid and reliable analytics to track the purification. Fast and reliable fingerprint based method for characterization of IgG prepared from Cohn I+II+III paste is presented in this paper. The fingerprint method bases on partial separation of proteins in linear gradient on CIMacTM quaternary amine, strong anion exchange group (QA) 0.1 mL column. Partial separation of proteins does not allow simple quantitative analysis of the samples during the IgG isolation from Cohn I+II+III fraction paste, but very accurate qualitative information about the composition of the sample can be obtained in less than 5 min. From the differences in the chromatograms of various samples, the ratio between IgG and impurities in each sample can be easily assessed. The method is suitable for input material control, in-line monitoring of the downstream processing, final control of the products, as well as in stability studies and enables taking fast and accurate decisions during fractionation process.

 Purchase full article.

Full view

2016

M. Naldi, M. Baldassarre, M. Domenicali, F. A. Giannone, M. Bossic, J. Montomoli,T. D. Sandahl, E. Glavind, H. Vilstrup, P. Caraceni, C. Bertucci
Journal of Pharmaceutical and Biomedical Analysis, Volume 122 (2016) 141-147

Human serum albumin (HSA) is the most abundant plasma protein, endowed with several biological properties unrelated to its oncotic power, such as antioxidant and free-radicals scavenging activities, binding and transport of many endogenous and exogenous substances, and regulation of endothelial function and inflammatory response. These non-oncotic activities are closely connected to the peculiarly dynamic structure of the albumin molecule. HSA undergoes spontaneous structural modifications, mainly by reaction with oxidants and saccharides; however, patients with cirrhosis show extensive post-transcriptional changes at several molecular sites of HSA, the degree of which parallels the severity of the disease. The present work reports the development and application of an innovative LC–MS analytical method for a rapid and reproducible determination of the relative abundance of HSA isoforms in plasma samples from alcoholic hepatitis (AH) patients. A condition of severe oxidative stress, similar to that observed in AH patients, is associated with profound changes in circulating HSA microheterogeneity. More interestingly, the high resolution provided by the analytical platform allowed the monitoring of novel oxidative products of HSA never reported before.

Download full article

Full view

Karla Mayolo-Deloisa, Jose Gonzalez-Valdez, and Marco Rito-Palomares
Biotechnol. Prog., 2016, Vol. 00, No. 00

Protein hydrophobicity can be modified after a PEGylation process. However, hydrophobic interaction chromatography (HIC) has been used to separate PEGylation reaction products less frequently than other techniques. In this context, chromatographic monoliths represent a good alternative to continue exploring the separation of PEGylated proteins with HIC. In this work, the separation of PEGylated proteins using C4 A monolith as well as Toyopearl Butyl 650C and Butyl Sepharose was analyzed. Three proteins were used as models: RNase A, b-lactoglobulin, and lysozyme. All proteins were PEGylated in the Nterminal amino groups with 20 kDa methoxy poly(ethylene glycol) propionaldehyde. The concentration of ammonium sulfate (1 M) used was the same for all stationary phases. The results obtained demonstrated that the C4 A monolith could better resolve all protein PEGylation reaction mixtures, since the peaks of mono- and di-PEGylated proteins can be clearly distinguished in the chromatographic profiles. On the contrary, while using Butyl Sepharose media only the PEGylation reaction mixtures of RNase A could be partially separated at 35 and 45 CVs. PEGylated proteins of b-lactoglobulin and lysozyme could not be resolved when Toyopearl Butyl 650C and Butyl Sepharose were used. It is then clear that monoliths are an excellent choice to explore the purification process of PEGylated proteins exploiting the advantages of HIC.

Download full article

Full view