On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2009

P. Gagnon

Roadmap to Process Development, issue 1/2009, BIA Separations

Introduction

Commercial purification process development involves harmonizing a complex hierarchy of safety, regulatory, and economic considerations with the unique physicochemical characteristics of the product and the suite of contaminants that must be removed. This can be challenging even with product classes that exhibit fairly consistent chromatographic behavior, such as IgG monoclonal antibodies. It is even more demanding with products that do not support a platform approach. In either case, process development requires detailed knowledge of how the product behaves relative to contaminants within the operating ranges of the methods that may be used in its purification. This knowledge can be obtained only by characterizing product retention experimentally, a process that begins with initial screening. Screening produces the first indications of what methods offer the most promising fractionation capabilities, under what conditions, and in what order different methods may be linked together to yield an integrated multi-step purification procedure.

Attachments

Full view

E.G. Vlakh, T.B. Tennikova

Journal of Chromatography A, 1216 (2009) 2637-2650

Monolithic columns were introduced in the early 1990s and have become increasingly popular as efficient stationary phases for most of the important chromatographic separation modes. Monoliths are functionally distinct from porous particle-based media in their reliance on convective mass transport. This makes resolution and capacity independent of flow rate. Monoliths also lack a void volume. This eliminates eddy dispersion and permits high-resolution separations with extremely short flow paths. The analytical value of these features is the subject of recent reviews. Nowadays, among other types of rigid macroporous monoliths, the polymethacrylate-based materials are the largest and most examined class of these sorbents. In this review, the applications of polymethacrylate-based monolithic columns are summarized for the separation, purification and analysis of low and high molecular mass compounds in the different HPLC formats, including micro- and large-scale HPLC modes.

Purchase full article

Full view

J. L. Ammerman, J. H. Aldstadt III

Microchim Acta (2009) 164:185-196

We describe the development and optimization of a sensitive and selective screening method for the measurement of trace levels of microcystins in surface waters. Several sample preparation techniques were compared, including solid-phase microextraction (SPME), particle-based solid-phase extraction (SPE), and monolith-based SPE. A flow-injection (FI) based approach employing a reversed-phase monolithic SPE column was found to be optimal. Quantification was performed by directly interfacing the FI-based SPE system to an electrospray ionization-mass spectrometer (ESI-MS). To more safely simulate peptidyl toxins such as the microcystins, a model peptide (i.e., angiotensin II) was used for method optimization. Sample loading flow rate and volume, eluent composition, and elution flow rate were optimized. Sample throughput was six samples per hour, a detection limit of 1.31 ng angiotensin II was demonstrated for a linear dynamic range from 1–1,000 ng and 3.4% relative standard deviation (n = 4, 100 ng sample). Sample volumes up to 1,000 ml of surface water could be loaded onto the monolithic SPE disk without exceeding the sorbent’s capacity. Unlike conventional particle-based SPE methods, the monolithic SPE disk does not need to be replaced between samples and could be used indefinitely. The FI-based SPE-ESI-MS method was successfully applied to the determination of microcystin-LR, the most common of the microcystins, in environmental samples and was demonstrated for the direct monitoring of chlorinated drinking water, with trends tracked over a period of eight months.

Purchase full article

Full view

C. Delattre, M. A. Vijayalakshmi

Journal of Molecular Catalysis B: Enzymatic 60 (2009) 97–105

Recent research in the area of bioactive carbohydrates has shown the efficiency of oligosaccharides as signal molecules in a lot of biological activities. Newly observed functions of oligosaccharides and their abilities to act as specific regulatory molecules on various organisms have been more and more described. A successful development of these bioactive molecules in future needs efficient processes for specific oligosaccharides production. To exploit them for putative industrial scale up processes, two main strategies are currently investigated: the synthesis (chemical or bioconversion processes) and the polysaccharide cleavage (chemical, physical or biological processes). Nevertheless, if new manufacturing biotechnologies have considerably increased the development of these functional molecules, the main drawback limiting their biological applications is the complexity to engender specific glycosidic structures for specific activities. In the recent years, new enzymatic reactors have been developed, allowing the automatic synthesis of oligosaccharide structures. This review focuses on the knowledge in the area of bioactive oligosaccharides and gives the main processes employed to generate them for industrial applications with challenges of monolith microreactors.

Purchase full article

Full view

2008

P. Gagnon

MSS2008

When monoclonal antibodies were first beginning to be commercialized, expression levels over 100 mg/L were considered outstanding, and cell culture was viewed as the bottleneck in manufacturing productivity. Antibody expression levels now commonly exceed 1 g/L and reports of 10 and 15 g/L have been recently announced. Downstream processing is now considered the bottleneck.

In one sense, the bottleneck is artificial. Cell culture production takes about two weeks (not counting preparation of seed stock) and purification takes about a week. In another sense, the bottleneck is real, and a genuine concern. Process time for the protein A capture step from 20,000 L of cell culture supernatant (CCS) commonly requires 72-96 hours. This represents multiple cycles. The long hold time for IgG produced in the early cycles increases the risk of degradation by proteolysis, deamidation, etc. It also increases the risk of contamination.

Read full presentation

Full view

V. Frankovič, A. Podgornik, N. Lendero Krajnc, F. Smrekar, P. Krajnc, A. Štrancar

Journal of Chromatography A, 1207 (2008) 84–93(2008) 84 – 93

A weak ion-exchange grafted methacrylate monolith was prepared by grafting a methacrylate monolith with glycidyl methacrylate and subsequently modifying the epoxy groups with diethylamine. The thickness of the grafted layer was determined by measuring permeability and found to be approximately 90 nm. The effects of different buffer solutions on the pressure drop were examined and indicated the influence of pH on the permeability of the grafted monolith. Protein separation and binding capacity (BC) were found to be flow-unaffected up to a linear velocity of 280 cm/h. A comparison of the BC for the non-grafted and grafted monolith was performed using β-lactoglobulin, bovine serum albumin (BSA), thyroglobulin, and plasmid DNA (pDNA). It was found that the grafted monolith exhibited 2- to 3.5-fold higher capacities (as compared to non-grafted monoliths) in all cases reaching values of 105, 80, 71, and 17 mg/ml, respectively. It was determined that the maximum pDNA capacity was reached using 0.1 M NaCl in the loading buffer. Recovery was comparable and no degradation of the supercoiled pDNA form was detected. Protein z-factors were equal for the non-grafted and grafted monolith indicating that the same number of binding sites are available although elution from the grafted monolith occurred at higher ionic strengths. The grafted monolith exhibited lower efficiency than the non-grafted ones. However, the baseline separation of pDNA from RNA and other impurities was achieved from a real sample.

Purchase full article

Full view

A. Jungbauer, R. Hahn

Journal of Chromatography A, 1184 (2008) 62–79(2008) 62 – 79

Monoliths are considered as the fourth-generation chromatography material. Their use for preparative separation of biomolecules has been evolved over the past decade. Monolithic columns up to 8 L in size are already commercially available for separation of large biomolecules such as proteins, protein aggregates, plasmid DNA, and viruses. These applications leverage monoliths’ inherent properties, such as fast operation and high capacity for large biomolecules. The height equivalent to a theoretical plate (HETP) and dynamic binding capacity do not change with velocity. This is explained by the convective transport through the channels with a diameter of above 1000 nm and has been experimentally verified and also supported by theoretical analyses. Despite low absolute surface area, these large channels provide enough area for adsorption of these large biomolecules, which cannot penetrate into conventional chromatography media designed for protein separation. Monoliths for preparative separations are mainly cast as polymethacrylate or polyacrylamide blocks and have been functionalized as ion exchangers or hydrophobic interaction chromatography media. So-called cryogels have channels more than 30 μm wide, enabling efficient processing of suspensions or even cell-chromatography. This review discusses the pressure drop characteristics, mass transfer properties, scale-up, and applications of monoliths in the context of conventional chromatography media.

Purchase full article

Full view

E. S. Sinitsyna, E. N. Vlasova, E. G. Vlakh, T. B. Tennikova

Russian Journal of Applied Chemistry, 2008, Vol. 81, No. 8, pp. 1403–1409

Copolymers containing aldehyde, succinimidyl carbonate, and imidazolecarbamate groups were prepared by polymer-analogous transformations of epoxy groups of a macroporous monolithic polymeric support derived from glycidyl methacrylate and ethylene glycol dimethacyrlate. The effect of certain parameters on the course of the copolymer modification and immobilization of a protein on the surface of the polymeric support was studied. The possibility of using the matrices obtained for development of biorecognizing systems was examined.

Purchase full article

Full view

M. Barut, A. Podgornik, L. Urbas, B. Gabor, P. Brne, J. Vidič, S. Plevčak, A. Štrancar

J. Sep. Sci. 2008, 31, 1867 – 1880

This review describes the novel chromatography stationary phase – a porous monolithic methacrylate-based polymer – in terms of the design of the columns and some of the features that make these columns attractive for the purification of large biomolecules. We first start with a brief summary of the characteristics of these large molecules (more precisely large proteins like immunoglobulins G and M, plasmid deoxyribonucleic acid (DNA), and viral particles), and a list of some of the problems that were encountered during the development of efficient purification processes. We then briefly describe the structure of the methacrylate-based monolith and emphasize the features which make them more than suitable for dealing with large entities. The highly efficient structure on a small scale can be transferred to a large scale without the need of making column modifications, and the various approaches of how this is accomplished are briefly presented in this paper. This is followed by presenting some of the examples from the bioprocess development schemes, where the implementation of the methacrylate-based monolithic columns has resulted in a very efficient and productive process. Following this, we move back to the analytical scale and demonstrate the efficiency of the monolithic column – where the mass transfer between the stationary and mobile phase is greatly enhanced – for the in-process and final control of the new therapeutics. The combination of an efficient structure and the appropriate hardware results in separations of proteins with residence time less than 0.1 s.

Purchase full article

Full view

C. Delattre, P. Michaud, M. A. Vijayalakshmi

Journal of Chromatography B, 861 (2008) 203–208

Fast production and purification of α-(1,4)-oligogalacturonides was investigated using a new enzymatic reactor composed of a monolithic matrix. Pectin lyase from Aspergillus japonicus (Sigma) was immobilized on CIM-disk epoxy monolith. Studies were performed on free pectin lyase and immobilized pectin lyase to compare the optimum temperature, optimum pH, and thermal stability. It was determined that optimum temperature for free pectin lyase and immobilized pectin lyase on monolithic support is 30 °C, and optimum pH is 5. Monolithic CIM-disk chromatography is one of the fastest liquid chromatographic method used for separation and purification of biomolecules due to high mass transfer rate. In this context, online one step production and purification of oligogalacturonides was investigated associating CIM-disk pectin lyase and CIM-disk DEAE. This efficient enzymatic bioreactor production of uronic oligosaccharides from polygalacturonic acid (PGA) constitutes an original fast process to generate bioactive oligouronides.

Purchase full article

Full view

2007

R. Hahn, A. Tscheliessnig, P. Bauerhansl, A. Jungbauer

J. Biochem. Biophys. Methods 70 (2007) 87–94

Monolithic media have found widespread use as excellent tools for fast analytical separations of small molecules, proteins, pDNA and viruses. Polymethacrylate monoliths with large channels are attractive for capturing large molecules, like immunoglobulins, DNA, and viruses. For preparative purposes, these monoliths are operated in radial flow mode. Band spreading in monoliths is extremely low and mostly dominated by the contribution of extra column effects. The model used here had a single axial dispersion coefficient which lumps together extra column effects and the intrinsic band spreading of the monolithic material to characterize the adsorption of proteins and pDNA on polymethacrylate ion-exchange monoliths. Due to the fact that the performance of the monolith was unaffected by the velocity within the applied range, and due to highly favourable adsorption isotherms, a constant pattern model could be applied to predict preparative runs on radial flow units assuming axial flow for modelling.

Purchase full article

Full view

R. Skudas, B. A. Grimes, E. Machtejevas, V. Kudirkaite, O. Kornysova, T. P. Hennessy, D. Lubda, K. K. Unger

Journal of Chromatography A, 1144 (2007) 72-84(2007) 72 - 84

In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of ∼25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18 < C8 < C4. The resolution of proteins and peptides by reversed-phase gradient liquid chromatography on n-octadecyl, n-octyl, and n-butyl bonded monolithic silica columns is optimized. The results obtained imply the use of acetonitrile concentration gradient up to 75% for n-octadecyl and n-octyl bonded monolithic silica columns, and the use of acetonitrile concentration gradient up to 85% for n-butyl bonded monolithic silica columns. With the respect to the gradient times and flow rates, the optimum conditions are the best with n-octyl and n-butyl bonded monolithic silica columns, where the range of optimum gradient times is up to ∼30 min and mobile phase flow rates in the range of 0.5–1 ml/min. Consequently, the best performance towards peak resolution is obtained with n-octyl bonded monolithic silica column with the respect to low concentration of organic phase gradient, fast separations and low solvent consumptions due to low flow rates.

Purchase full article

Full view

J. Vidič, A. Podgornik, J. Jančar, V. Frankovič, B. Košir, N. Lendero, K. Čuček, M. Krajnc, A. Štrancar

Journal of Chromatography A, 1144 (2007) 63–71(2007) 63 – 71

Chemical and chromatographic stability of methacrylate-based monolithic columns bearing 3-N,N-diethylamino-2-hydroxypropyl (DEAE) and quarternary amine (QA) groups was studied. The leakage products from both monolithic columns were determined and the leakage of amines has been quantified in alkali solutions. Monolithic columns bearing QA functional groups being exposed to 1 M sodium hydroxide solution for up to 3 months caused reduction of ion-exchange groups for approximately 12%, while for DEAE monolithic columns was only around 3% in 1 year. In 0.1 M NaOH and 20% ethanol degradation was significantly lower. The main leaking compound from DEAE monolith was found to be 3-(diethylamino)-1,2-propanediol and 2,3-dihydroxypropyltrimethylammonium salt for QA monolith. During repeated 50 cleaning-in-place (CIP) cycles, no changes in chromatographic properties were detected.

Purchase full article

Full view

B. A. Grimes, R. Skudas, K. K. Unger, D. Lubda

Journal of Chromatography A, 1144 (2007) 14-29(2007) 14-29

In this work, a parallel pore model (PPM) and a pore network model (PNM) are developed to provide a state-of-art method for the calculation of several characteristic pore structural parameters from inverse size-exclusion chromatography (ISEC) experiments. The proposed PPM and PNM could be applicable to both monoliths and columns packed with porous particles. The PPM and PNM proposed in this work are able to predict the existence of the second inflection point in the experimental exclusion curve that has been observed for monolithic materials by accounting for volume partitioning of the polymer standards in the macropores of the column. The appearance and prominence of the second inflection point in the exclusion curve is determined to depend strongly on the void fraction of the macropores (flow-through pores), (b) the nominal diameter of the macropores, and (c) the radius of gyration of the largest polymer standard employed in the determination of the experimental ISEC exclusion curve. The conditions that dictate the appearance and prominence of the second inflection point in the exclusion curve are presented. The proposed models are applied to experimentally measured ISEC exclusion curves of six silica monoliths having different macropore and mesopore diameters. The PPM and PNM proposed in this work are able to determine the void fractions of the macropores and silica skeleton, the pore connectivity of the mesopores, as well as the pore number distribution (PND) and pore volume distribution (PVD) of the mesopores. The results indicate that the mesoporous structure of all materials studied is well connected as evidenced by the similarities between the PVDs calculated with the PPM and the PNM, and by the high pore connectivity values obtained from the PNM. Due to the fact that the proposed models can predict the existence of the second inflection point in the exclusion curves, the proposed models could be more applicable than other models for ISEC characterization of chromatographic columns with small diameter macropores (interstitial pores) and/or large macropore (interstitial pore) void fractions. It should be noted that the PNM can always be applied without the use of the PPM, since the PPM is an idealization that considers an infinitely connected porous medium and for materials having a low (<6) pore connectivity the PPM would force the PVD to a lower average diameter and larger distribution width as opposed to properly accounting for the network effects present in the real porous medium.

Purchase full article

Full view

I. Junkar, T. Koloini, P. Krajnc, D. Nemec, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1144 (2007) 48-54(2007) 48-54

Today, monoliths are well-accepted chromatographic stationary phases due to several advantageous properties in comparison with conventional chromatographic supports. A number of different types of monoliths have already been described, among them recently a poly(high internal phase emulsion) (PolyHIPE) type of chromatographic monoliths. Due to their particular structure, we investigated the possibility of implementing different mathematical models to predict pressure drop on PolyHIPE monoliths. It was found that the experimental results of pressure drop on PolyHIPE monoliths can best be described by employing the representative unit cell (RUC) model, which was originally derived for the prediction of pressure drop on catalytic foams. Models intended for the description of particulate beds and silica monoliths were not as accurate. The results of this study indicate that the PolyHIPE structure under given experimental condition is, from a hydrodynamic point of view, to some extent similar to foam structures, though any extrapolation of these results may not provide useful predictions of pressure versus flow relations and further experiments are required.

Purchase full article

Full view

K. Isobe, Y. Kawakami

Journal of Chromatography A, 1144 (2007) 85-89(2007) 85-89

A convection interaction media (trade name CIM, Sartorius BIA Separation, Ljubljana, Slovenia) isobutyl monolithic disc was prepared by incubating a CIM epoxy monolithic disc with isobutylamine, and it was then applied to the purification of secondary alcohol dehydrogenase (S-ADH) and primary alcohol oxidase (P-AOD). Both enzymes were adsorbed on this column and eluted with high purity. Thus, S-ADH was purified to an electrophoretically homogeneous state by four column chromatographies using CIM DEAE-8 and CIM C4-8 tube monolithic columns, blue-Sepharose column and CIM isobutyl disc monolithic column. P-AOD was also purified to an electrophoretically homogeneous state by three column chromatographies of CIM DEAE-8 tube, CIM C4-8 tube and CIM isobutyl disc columns.

Purchase full article

Full view

S. Laschober, M. Sulyok, E. Rosenberg

Journal of Chromatography A, 1144 (2007) 55-62(2007) 55-62

The present work aims at the optimisation of the synthesis of methyl-silsesquioxane monolithic capillary columns using a sol–gel based protocol. The influence of reaction conditions such as temperature, reaction mixture composition and catalyst concentration has been examined. The morphology of the products was studied by scanning electron microscopy and nitrogen adsorption. Monolithic capillary columns were obtained with a skeleton-like structure with open pores. Pore diameters vary from 0.8 to 15 μm, diameters of the xerogel network vary from 0.4 to 12 μm, respectively. Specific surface areas up to 334 m2/g have been observed, however, many materials did not possess areas above few m2/g which represents the limit of detection of the nitrogen porosimetry measurements. Excellent adhesion to the capillary wall was observed in all cases, and drying was possible at ambient conditions without the formation of cracks.

Purchase full article

Full view

I.Vovk, B. Simonovska

Journal of Chromatography B, 849 (2007) 337-343

The most abundant isoforms of tomato pectin methylesterase (PME; EC 3.1.1.11; Mr 26 kDa), polygalacturonase (PG; EC 3.2.1.15; PG1 with Mr 82 kDa) and a basic protein with Mr 42 kDa and unknown function were isolated from fresh tomato fruit by a fast chromatographic procedure on a Convective Interaction Media (CIM®) short monolithic disk column bearing carboxymethyl (CM) groups. The extraction of the targeted enzymes with 1.2 M NaCl solution was followed by precipitation with ammonium sulfate at 60% of saturation, solubilisation of the pellet in 0.5 M NaCl and fractionation using a linear gradient from 0 to 700 mM NaCl. Among six fractions five had PME activity and four had PG activity, while one fraction containing a pure protein with Mr 42 kDa with neither of these activities. Two concentrated fractions, one with PG and one with PME were further purified. A linear gradient from 0 to 500 mM NaCl with 20% CH3CN in the mobile phase was used for the PG fraction and two CM disks and a linear gradient from 0 to 200 mM NaCl were used for the PME fraction as a greater capacity was necessary in this case. From 4 kg of fresh tomato flesh we obtained 22 mg of purified PME, 1.8 mg of purified, active PG1, 13.5 mg of additional basic protein and a fraction with PG2 contaminated by a PME isoform. Carboxymethyl CIM disk short monolithic columns are convenient for semi-preparative and analytical work with tomato fruit pectolytic enzymes.

Purchase full article

Full view

I. Vovk, B. Simonovska

Journal of Chromatography A, 1144 (2007) 90-96(2007) 90-96

An improved cation-exchange chromatographic procedure on Convective Interaction Media (CIM, Sartorius BIA Separations, Ljubljana, Slovenia) short monolithic methacrylate disk columns was used for the isolation of salt-independent pectin methylesterase (PME; EC 3.1.1.11) isoform and endo-polygalacturonase PG1 (PG, EC 3.2.1.15) from ripe tomato fruit extract after studying the chromatographic conditions including type of disk, binding buffer, pH, eluent composition and different gradients. Between 10 and 20 μg of proteins gave reliable chromatograms. Both carboxymethyl (CM) and sulfonyl (SO3) disks were equally suitable for the fractionation of tomato extract using the new gradient, but only CM disk was appropriate for further purification of the PME and PG fractions, and provided fast and sharp separation of proteins. The isolation of pure PG1 could be achieved only by addition of 20% of acetonitrile to the mobile phase. About 200 μg of proteins were loaded at one chromatographic run at the fractionation and purification. Determination of the molecular weights of the separated proteins showed that dimer of salt-independent PME isoform was formed in concentrated solutions of the enzyme but dissociated upon dilution of the solution. From 6 kg of fresh tomato flesh, 28 mg of purified salt-independent PME, 12.5 mg of purified and active PG1 and 4 mg of PG2 fraction contaminated with salt-dependent PME isoform were obtained by means of semi-preparative chromatography on CIM disks.

Purchase full article

Full view

E. Machtejevas, S. Andrecht, D. Lubda, K. K. Unger

Journal of Chromatography A, 1144 (2007) 97-101

The following particulate and monolithic silica columns were implemented in a fully automated and flexible multidimensional LC/MS system with integrated sample clean-up, to perform the analysis of endogeneous peptides from filtered urine and plasma samples: restricted access sulphonic acid strong cation-exchanger (RAM-SCX) for sample clean-up, RP 18 Chromolith guard columns as trap columns and 100 μm I.D. monolithic RP 18 fused silica capillary columns as last LC dimension. The results show sufficient overall system reproducibility and repeatability. Implementation of monolithic silica columns added an additional flexibility with respect to flow rate variation and adjustment due to the low column back pressures. Also, monolithic columns showed a lower clogging rate in long-term usage for biological samples as compared to particulate columns. The applied system set-up was tested to be useful for the routine peptide screening in search of disease biomarkers.

Purchase full article

Full view