On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2007

I. Vovk, B. Simonovska

Journal of Chromatography A, 1144 (2007) 90-96(2007) 90-96

An improved cation-exchange chromatographic procedure on Convective Interaction Media (CIM, Sartorius BIA Separations, Ljubljana, Slovenia) short monolithic methacrylate disk columns was used for the isolation of salt-independent pectin methylesterase (PME; EC 3.1.1.11) isoform and endo-polygalacturonase PG1 (PG, EC 3.2.1.15) from ripe tomato fruit extract after studying the chromatographic conditions including type of disk, binding buffer, pH, eluent composition and different gradients. Between 10 and 20 μg of proteins gave reliable chromatograms. Both carboxymethyl (CM) and sulfonyl (SO3) disks were equally suitable for the fractionation of tomato extract using the new gradient, but only CM disk was appropriate for further purification of the PME and PG fractions, and provided fast and sharp separation of proteins. The isolation of pure PG1 could be achieved only by addition of 20% of acetonitrile to the mobile phase. About 200 μg of proteins were loaded at one chromatographic run at the fractionation and purification. Determination of the molecular weights of the separated proteins showed that dimer of salt-independent PME isoform was formed in concentrated solutions of the enzyme but dissociated upon dilution of the solution. From 6 kg of fresh tomato flesh, 28 mg of purified salt-independent PME, 12.5 mg of purified and active PG1 and 4 mg of PG2 fraction contaminated with salt-dependent PME isoform were obtained by means of semi-preparative chromatography on CIM disks.

Purchase full article

Full view

K. Benčina, M. Benčina, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1160 (2007) 176–183

The chromatography of mechanically sensitive macromolecules still represents a challenge. While larger pores can reduce the mechanically induced cleavage of large macromolecules and column clogging, the column performance inevitably decreases. To investigate the effect of pore size on the mechanical degradation of DNA, column permeability and enzyme biological activity, methacrylate monoliths with different pore sizes were tested. Monolith with a 143 nm pore radius mechanically damaged the DNA and was clogged at flow rates above 0.5 ml min−1 (26 cm h−1). For monoliths with a pore radius of 634 nm and 2900 nm, no mechanical degradation of DNA was observed up to 5 ml min−1 (265 cm h−1) above which the HPLC itself became the main source of damage. A decrease of a permeability appeared at flow rate 1.8 ml min−1 (95 cm h−1) and 2.3 ml min−1 (122 cm h−1), respectively. The effect of the pore size on enzyme biological activity was tested with immobilized DNase and trypsin on all three monoliths. Although the highest amount of enzyme was immobilized on the monolith with the smallest pores, monolith with the pore radius 634 nm exhibited the highest DNase biological activity probably due to restricted access for DNA molecules into the small pores. Interestingly, specific biological activity was increasing with a pore size decrease. This was attributed to higher number of contacts between a substrate and immobilized ligand.

Purchase full article

Full view

S. Yamamoto, M. Nakamura, C. Tarmann, A. Jungbauer

Journal of chromatography 1144 (2007) 155-160

Linear gradient elution experiments were carried out on monolithic anion-exchange chromatography (AEC) with oligo-DNAs of various sizes (4–50mer, molecular weight MW = 1200–15,000) and compositions in order to investigate the retention mechanism. The binding site (B) values as well as the peak salt elution concentration IR values were determined. The B values determined for the monolithic AEC were similar to the values for non-porous AEC and porous AEC. The B value increased linearly with the number of charges (bases) of single-strand DNA when MW is less than ca. 3600 (12mer). When MW is greater than 6000, the slope of B versus MW decreased, and became very small at MW > 30,000. The IR value also increased linearly with MW for MW < 6000, and slightly with MW for MW > 10,000. It was shown that a very difficult separation of a single-strand 50mer poly(T) and a double-strand 50mer poly(A) and poly(T) was accomplished within 10 min by using a very shallow gradient at a high initial salt concentration (0.5 M) and a high flow-velocity (2.7 cm/min).

Purchase full article

Full view

M. Brgles, B Halassy, J. Tomašić, M. Šantak, D. Forčić, M. Barut, A. Štrancar

Journal of Chromatography A 1144 (2007) 150-154

A high-performance liquid chromatography (HPLC) method for the determination of DNA entrapment efficiency in liposomes has been developed. Plasmid DNA was encapsulated into positively charged liposomes. Non-entrapped DNA was separated by ultracentrifugation from liposomes and supernatant was chromatographed on Convective Interaction Media (CIM) DEAE disk. The elution of DNA was monitored by the absorbance at 260 nm and the quantity of DNA in the tested sample was calculated from the integrated peak areas using the appropriate standard curve. This method is fast, simple, precise and does not require any kind of DNA labelling in contrast with mostly used methods for determination of DNA entrapment efficiency.

Purchase full article

Full view

R. Nicoli, N. Gaud, C. Stella, S. Rudaz, J.-L. Veuthey

Journal of Pharmaceutical and Biomedical Analysis 48 (2008) 398–407

The preparation and characterization of three trypsin-based monolithic immobilized enzyme reactors (IMERs) developed to perform rapid on-line protein digestion and peptide mass fingerprinting (PMF) are described. Trypsin (EC 3.4.21.4) was covalently immobilized on epoxy, carboxy imidazole (CDI) and ethylenediamine (EDA) Convective Interaction Media® (CIM) monolithic disks. The amount of immobilized enzyme, determined by spectrophotometric measurements at 280 nm, was comprised between 0.9 and 1.5 mg per disk. Apparent kinetic parameters K*m and V*max, as well as apparent immobilized trypsin BAEE-units, were estimated in flow-through conditions using N-α-benzoyl-l-arginine ethyl ester (BAEE) as a low molecular mass substrate. The on-line digestion of five proteins (cytochrome c, myoglobin, α1-acid glycoprotein, ovalbumin and albumin) was evaluated by inserting the IMERs into a liquid chromatography system coupled to an electrospray ionization ion-trap mass spectrometer (LC-ESI–MS/MS) through a switching valve. Results were compared to the in-solution digestion in terms of obtained scores, number of matched queries and sequence coverages. The most efficient IMER was obtained by immobilizing trypsin on a CIM® EDA disk previously derivatized with glutaraldehyde, as a spacer moiety. The proteins were recognized by the database with satisfactory sequence coverage using a digestion time of only 5 min. The repeatability of the digestion (R.S.D. of 5.4% on consecutive injections of myoglobin 12 μM) and the long-term stability of this IMER were satisfactory since no loss of activity was observed after 250 injections.

Purchase full article

Full view

M. Bartolini, V. Cavrini, V. Andrisano

Journal of Chromatography A, 1144 (2007) 102–110

The aim of the present study was the application of a human AChE-CIM-IMER (enzyme reactor containing acetylcholinesterase immobilized on a monolithic disk) for the rapid evaluation of the thermodynamic and kinetic constants, and the mechanism of action of new selected inhibitors. For this application, human recombinant AChE was covalently immobilized onto an ethylenediamine (EDA) monolithic Convective Interaction Media (CIM) disk and on-line studies were performed by inserting this IMER into a HPLC system. Short analysis time, absence of backpressure, low nonspecific matrix interactions and immediate recovery of enzyme activity were the best characteristics of this AChE-CIM-IMER. Mechanisms of action of selected reversible inhibitors (tacrine, donepezil, edrophonium, ambenonium) were evaluated by means of Lineweaver–Burk plot analysis. Analyses were performed on-line by injecting increasing concentrations of the tested inhibitor and substrate and by monitoring the product peak area. AChE-CIM-IMER kinetic parameters (Kmapp and vmaxapp ) were derived as well as inhibitory constants (Kiapp of selected compounds. Moreover, noteworthy results were obtained in the application of the AChE-CIM-IMER to the characterization of the carbamoylation and decarbamoylation steps in pseudo-irreversible binding of carbamate derivatives (physostigmine and rivastigmine). AChE-CIM-IMER appeared to be a valid tool to determine simultaneously the kinetic constants in a reliable and fast mode. The obtained values were found in agreement with those obtained with the classical methods with the free enzyme. Furthermore, after inactivation by carbamates, activity could be fully recovered and the AChE-CIM-IMER could be reused for further studies. Results showed that the AChE-CIM-IMER is a valid tool not only for automated fast screening in the first phase of the drug discovery process but also for the finest characterization of the mode of action of new hit compounds with increased accuracy and reproducibility and with saving of time and materials.

Purchase full article

Full view

2006

M. Krajačić, J. Ivancic-Jelecki, D. Forčić, A. Vrdoljak, D. Škorić

Journal of Chromatography A, 1144 (2007) 111-119

Replicative double-stranded RNA (dsRNA) is useful in preliminary identification of Cucumber mosaic virus and its satellite RNA (satRNA). This plant pathogen complex yields sufficient quantity of the replicative RNA form that can be isolated by chromatography on chemically unmodified graded cellulose powder (CF-11). In this work, much faster and more efficient procedure using DEAE monoliths was developed in which dsRNA was separated from other species in total nucleic acids extract originating from the infected plant tissue. The developed chromatographic method revealed the pathogens’ presence in only 15 min, avoiding nucleic acid precipitation and electrophoretic analysis.

Purchase full article

Full view

2005

K. Isobe, Y. Kawakami

Journal of Chromatography A, 1065 (2005) 129-134

Chromatography conditions for two types of convection interaction media (CIM) tube monolithic column, DEAE-8 and C4-8, were investigated using three enzymes from different microorganisms. The enzymes were adsorbed on a CIM DEAE-8 tube column under the same conditions as conventional DEAE columns. The CIM C4-8 tube column required a high concentration of ammonium sulfate compared to the conventional C4 column for adsorbing the enzymes. The separation of enzymes on the CIM tube column chromatography was not affected at flow rates between 0.15 and 1.25 volumes of the column per min. Both columns were successfully applied to the purification of enzymes from crude enzyme solution. Thus, both CIM tube monolithic columns proved useful in greatly reducing the purification time, and could be used at any stage of enzyme purification.

Purchase full article

Full view

I. Vovk, B. Simonovska, M. Benčina

Journal of Chromatography A, 1065 (2005) 121-128

One of the main forms of tomato pectin methylesterase (PME; EC 3.1.1.11) that is applicable to the food industry was isolated from fresh tomato fruit. The extraction of the PME isoenzymes involved washing the fresh tomato flesh with water in order to remove sugars and than solubilizing the enzymes with a diluted HCl solution at pH 1.6. The extract was then neutralized to pH 7.4 using buffer solution. After filtration, the solution was directly fractioned using Convective Interaction Media (CIM®) short monolithic disk column bearing sulfonyl (SO3) groups and using a linear gradient from 0 to 700 mM NaCl. The injection volume was 3 ml and the diameter of the column was 12 mm and length 3 mm. The isolated fractions were monitored for protein content and PME activity. The fraction with the targeted enzyme, which showed NaCl independent activity, was further purified and concentrated by ultrafiltration and finally purified by a second semi-preparative cation-exchange chromatography step using a CIM carboxymethyl (CM) disk monolithic column consisting of two disks and applying a step gradient. From 1 kg of fresh tomato fruits, 7.5 mg of purified PME with molecular mass estimated to be 26 000 by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was obtained. A fraction with mixed PME and polygalacturonase activity was also obtained. Compared to the published procedures for the isolation and purification of PME from plant materials, this new procedure is much faster and more efficient. The potential application of CIM disk short monolithic columns in the analysis and semi-preparative extraction and isolation of the PME isoenzyme is presented.

Purchase full article

Full view

Y.-P. Lim, D. Josić, H. Callanan, J. Brown, D. C. Hixson

Journal of Chromatography A, 1065 (2005) 39–43(2005) 39–43

Epoxy-activated monolithic CIM disks seem to be excellent supports for immobilization of protein ligands. The potential use of enzymes, immobilized on monolithic disks for rapid preparative cleavage proteins in solution was investigated. Digestion of complex plasma proteins was demonstrated by using inter-alpha inhibitors with elastase, immobilized on epoxy-activated CIM disks. Recently, a monoclonal antibody against human inter-alpha inhibitor proteins (MAb 69.31) was developed. MAb 69.31 blocks the inhibitory activity of inter-alpha inhibitor proteins to serine proteases. These results suggest that the epitope defined by this antibody is located within or proximal to the active site of the inhibitor molecule. This antibody, immobilized on monolithic disk, was used for very rapid isolation of inter-alpha proteins. The isolated complex protein was used for enzymatic digestion and isolation of cleavage products, especially from inter-alpha inhibitor light chain to elucidate precisely the target sequence for MAb 69.31 by N-terminal amino acid sequencing. Bovine pancreatic elastase immobilized on monolithic disk cleaves inter-alpha inhibitor protein complex into small fragments which are still reactive with MAb 69.31. One of these proteolytic fragments was isolated and partially sequenced. It could be shown that this sequence is located at the beginning of two proteinase inhibitor domains of the inter-alpha inhibitor light chain (bikunin). Elastase immobilized on monolithic disk offers a simple and rapid method for preparative isolation of protease cleavage fragments. The immobilized enzyme is stable and still active after repeated runs. A partial or complete digestion can be achieved by varying the flow rate.

Purchase full article

Call

Send SMS

Add to Skype

You'll need Skype CreditFree via Skype

Full view

D. Forčić, K. Branovič Čakanič, J. Ivančič, R. Jug, M. Barut, A. Štrancar, R. Mazuran

Analytical Biochemistry 336 (2005) 273-278

Analysis of crude samples from biotechnological processes is often required to demonstrate that residual host cell impurities are reduced or eliminated during purification. Current knowledge suggests that a continuous-cell-line DNA can be considered a cellular contaminant rather than a significant risk factor requiring removal to extremely low levels. Anion-exchange chromatography is one of the most important methods used in the downstream processing and analysis of different biomolecules. In this article, an application using Convective Interaction Media monolithic columns to improve the detection of residual cellular DNA is described.

Purchase full article

Full view

S. Jerman, A. Podgornik, K. Cankar, N. Čadež, M. Skrt, J. Žel, P. Raspor

Journal of Chromatography A 1065 (2005) 107-113

The availability of sufficient quantities of DNA of adequate quality is crucial in polymerase chain reaction (PCR)-based methods for genetically modified food detection. In this work, the suitability of anion-exchange CIM (Convective Interaction Media; Sartorius BIA Separations, Ljubljana, Slovenia) monolithic columns for isolation of DNA from food was studied. Maize and its derivates corn meal and thermally pre-treated corn meal were chosen as model food. Two commercially available CIM disk columns were tested: DEAE (diethylaminoethyl) and QA (quaternary amine). Preliminary separations were performed with standard solution of salmon DNA at different pH values and different NaCl concentrations in mobile phase. DEAE groups and pH 8 were chosen for further isolations of DNA from a complex matrix—food extract. The quality and quantity of isolated DNA were tested on agarose gel electrophoresis, with UV-scanning spectrophotometry, and by amplification with real-time PCR. DNA isolated in this way was of suitable quality for further PCR analyses. The described method is also applicable for DNA isolation from processed foods with decreased DNA content. Furthermore, it is more effective and less time-consuming in comparison with the existing proposed methods for isolation of DNA from plant-derived foods.

Purchase full article

Full view

D. Forčić, K. Branović-Čakanić, J. Ivančić, R. Jug, M. Barut, A. Štrancar

Journal of Chromatography A 1065 (2005) 115-120

The isolation and purification of nucleic acids is essential for many procedures in molecular biology. After showing that bacterial and eukaryotic genomic DNA can be specifically bound to the CIM DEAE monolithic column, this characteristic was exploited in development of a simple and fast chromatographic procedure for isolation and purification of genomic DNA from cell lysates that does not include the usage of toxic organic solutions. The purity and the quality of the isolate as well as the duration of the procedure was similar to other chromatographic methods used today for isolation of genomic DNA, but the initial sample volume was not restricted.

Purchase full article

Full view

J. Urthaler, R. Schlegl, A. Podgornik, A. Štrancar, A. Jungbauer, R. Necina

Journal of Chromatography A 1065 (2005) 93-106

The demand of high-purity plasmid DNA (pDNA) for gene-therapy and genetic vaccination is still increasing. For the large scale production of pharmaceutical grade plasmids generic and economic purification processes are needed. Most of the current processes for pDNA production use at least one chromatography step, which always constitutes as the key-step in the purification sequence. Monolithic chromatographic supports are an alternative to conventional supports due to their excellent mass transfer properties and their high binding capacity for pDNA. Anion-exchange chromatography is the most popular chromatography method for plasmid separation, since polynucleotides are negatively charged independent of the buffer conditions. For the implementation of a monolith-based anion exchange step into a pDNA purification process detailed screening experiments were performed. These studies included supports, ligand-types and ligand-densities and optimization of resolution and productivity. For this purpose model plasmids with a size of 4.3 and 6.9 kilo base pairs (kbp) were used. It could be shown, that up-scaling to the production scale using 800 ml CIM Convective Interaction Media radial flow monoliths is possible under low pressure conditions. CIM DEAE was successfully implemented as intermediate step of the cGMP pDNA manufacturing process. Starting from 200 l fermentation aliquots pilot scale purification runs were performed in order to prove scale-up and to predict further up-scaling to 8 l tube monolithic columns. The analytical results obtained from these runs confirmed suitability for pharmaceutical applications.

Purchase full article

Full view

M. Peterka, P. Kramberger, A. Štrancar

WANG, Perry G. (ur.). Monolithic chromatography and its modern applications. St Albans: ILM publications, 2010, pg. 489-508

Downstream processing (DSP) for purification can become a significant bottleneck in the production of novel biotherapeutics, such as viral vectors and vaccines (viral or DNA). Although different techniques can be used for the purification of large molecules and particles, liquid chromatography is the preferred method as it achieves the purity required by regulatory agencies. Despite the popularity of conventional chromatographic media, the diffusional mass transfer of large molecules and relatively small pore size remain limiting factors for the efficient separation of large biomolecules and particles. Methacrylate monoliths are a single-piece chromatographic support that consists of a highly porous material with an interconnected network of channels. The transport mechanism is predominantly based on convection, which allows rapid mass transfer between the mobile and stationary phase and so results in short separation times. Additionally, most of the active sites are located in the open, large channel structure and are therefore easily accessible, which results in a high DBC (DBC) for large molecules and viral particles. These characteristics make methacrylate monoliths an ideal chromatographic support for the separation and purification of extremely large molecules, such as large proteins, different types of DNA and virus particles.

Full view

M. Bartolini, V. Cavrini, V. Andrisano

Journal of Chromatography A, 1065 (2005) 135-144

The aim of the present study was to optimize the preparation of an immobilized acetylcholinesterase (AChE)-based micro-immobilized enzyme reactor (IMER) for inhibition studies. For this purpose two polymeric monolithic disks (CIM, 3 mm × 12 mm i.d.) with different reactive groups (epoxy and ethylendiamino) and a packed silica column (3 mm × 5 mm i.d.; Glutaraldehyde-P, 40 μm) were selected as solid chromatographic supports. All these reactors were characterized in terms of rate of immobilization, stability, conditioning time for HPLC analyses, optimum mobile phase and peak shape, aspecific interactions and costs. Advantages and disadvantages were defined for each system. Immobilization through Schiff base linkage gave more stable reactors without any significant change in the enzyme behaviour; monolithic matrices showed very short conditioning time and fast recovery of the enzymatic activity that could represent very important features in high throughput analysis and satisfactory reproducibility of immobilization yield. Unpacked silica material allowed off-line low costs studies for the optimization of the immobilization step.

Purchase full article

Full view

2004

H. Podgornik, A. Podgornik

Journal of Chromatography B, 799 (2004) 343–347

Different chromatographic methods including chromatofocusing are used for separation of manganese peroxidase (MnP) isoforms and their isolation from the fungal growth medium. We tested strong anion exchange methacrylate based monolithic columns as a stationary phase for fast separation of MnP’s. Sodium acetate buffers of two different pH values (6 and 4) were used for formation of reproducible pH gradient. The entire cycle, involving analysis and column regeneration, was completed in 3 min. Use of pH gradient showed better MnP isoform separation comparing to the salt gradient, while application of combined pH–salt gradient, resulted in further improvement.

Purchase full article

Full view

E. Vlakh, A. Novikov, G. Vlasov, T. Tennikova

Journal of Peptide Science, 10: 719–730 (2004)

Monoliths based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) can be used directly as sorbents for affinity chromatography after solid phase peptide synthesis. The quality of the synthesized products, the amount of grown peptides on a support and the reproducibility of the process must be considered. A determination of the quantity of the introducing β-Ala (and, consequently, the total amount of synthesized peptide) was carried out. Three peptides complementary to recombinant tissue plasminogen activator (t-PA) have been synthesized using Fmoc-chemistry on GMA-EDMA disks. The peptidyl ligands were analysed by amino acid analysis, ES-MS and HPLC methods.

The affinity binding parameters were obtained from frontal elution data. The results were compared with those established for GMA-EDMA affinity sorbents formed by the immobilization of the same but separately synthesized and purified ligands. The immobilization on GMA-EDMA disks was realized using a one-step reaction between the amino groups of the synthetic ligand and the original epoxy groups of monolithic material. The affinity constants found for two kinds of sorbent did not vary significantly. Finally, the directly obtained affinity sorbents were tested for t-PA separation from a cellular supernatant.

Purchase full article

Full view

E. G. Vlakh, A. Tappe, C. Kasper, T. B. Tennikova

Journal of Chromatography B, 810 (2004) 15–23

Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein’s denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA–EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.

Purchase full article

Full view

E. G. Vlakh, A. Tappe, C. Kasper, T. B. Tennikova

Journal of Chromatography B, 810 (2004) 15–23

Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein’s denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA–EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.

Purchase full article

Full view