On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!

Convective Interaction Media Monoliths for Separation and Purification of pDNA and Viruses

M. Peterka, P. Kramberger, A. Štrancar

WANG, Perry G. (ur.). Monolithic chromatography and its modern applications. St Albans: ILM publications, 2010, pg. 489-508

Downstream processing (DSP) for purification can become a significant bottleneck in the production of novel biotherapeutics, such as viral vectors and vaccines (viral or DNA). Although different techniques can be used for the purification of large molecules and particles, liquid chromatography is the preferred method as it achieves the purity required by regulatory agencies. Despite the popularity of conventional chromatographic media, the diffusional mass transfer of large molecules and relatively small pore size remain limiting factors for the efficient separation of large biomolecules and particles. Methacrylate monoliths are a single-piece chromatographic support that consists of a highly porous material with an interconnected network of channels. The transport mechanism is predominantly based on convection, which allows rapid mass transfer between the mobile and stationary phase and so results in short separation times. Additionally, most of the active sites are located in the open, large channel structure and are therefore easily accessible, which results in a high DBC (DBC) for large molecules and viral particles. These characteristics make methacrylate monoliths an ideal chromatographic support for the separation and purification of extremely large molecules, such as large proteins, different types of DNA and virus particles.