On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2009

S. Yamamoto, M. Nakamura, C. Tarmann, A. Jungbauer

Journal of Chromatography A 1216 (2009) 2616-2620

Our previous study has shown that there is a good correlation between the number of charges of DNA (from trimer to 50-mer) and the number of binding sites B in electrostatic interaction chromatography (ion-exchange chromatography, IEC). It was also found that high salt (NaCl) concentration is needed to elute large DNAs (>0.6 M). In this paper we further performed experiments with large DNAs (up to 95-mer polyT and polyA) and charged liposome particles of different sizes (ca. 30, 50 and 100 nm) with a monolithic anion-exchange disk in order to understand the binding and elution mechanism of very large charged biomolecules or particles. The peak salt (NaCl) concentration increased with increasing DNA length. However, above 50-mer DNAs the value did not increase significantly with DNA length (ca. 0.65–0.70 M). For liposome particles of different sizes the peak salt concentration (ca. 0.62 M) was similar and slightly lower than that for large DNAs (ca. 0.65–0.70 M). The binding site values (ca. 25–30) are smaller than those for large DNAs. When arginine was used as a mobile phase modulator, the elution position of polyA and polyT became very close whereas in NaCl gradient elution polyT appeared after polyA eluted. This was mainly due to suppression of hydrophobic interaction by arginine.

Purchase full article

Full view

2008

P. Gagnon

MSS2008

When monoclonal antibodies were first beginning to be commercialized, expression levels over 100 mg/L were considered outstanding, and cell culture was viewed as the bottleneck in manufacturing productivity. Antibody expression levels now commonly exceed 1 g/L and reports of 10 and 15 g/L have been recently announced. Downstream processing is now considered the bottleneck.

In one sense, the bottleneck is artificial. Cell culture production takes about two weeks (not counting preparation of seed stock) and purification takes about a week. In another sense, the bottleneck is real, and a genuine concern. Process time for the protein A capture step from 20,000 L of cell culture supernatant (CCS) commonly requires 72-96 hours. This represents multiple cycles. The long hold time for IgG produced in the early cycles increases the risk of degradation by proteolysis, deamidation, etc. It also increases the risk of contamination.

Read full presentation

Full view

V. Frankovič, A. Podgornik, N. Lendero Krajnc, F. Smrekar, P. Krajnc, A. Štrancar

Journal of Chromatography A, 1207 (2008) 84–93(2008) 84 – 93

A weak ion-exchange grafted methacrylate monolith was prepared by grafting a methacrylate monolith with glycidyl methacrylate and subsequently modifying the epoxy groups with diethylamine. The thickness of the grafted layer was determined by measuring permeability and found to be approximately 90 nm. The effects of different buffer solutions on the pressure drop were examined and indicated the influence of pH on the permeability of the grafted monolith. Protein separation and binding capacity (BC) were found to be flow-unaffected up to a linear velocity of 280 cm/h. A comparison of the BC for the non-grafted and grafted monolith was performed using β-lactoglobulin, bovine serum albumin (BSA), thyroglobulin, and plasmid DNA (pDNA). It was found that the grafted monolith exhibited 2- to 3.5-fold higher capacities (as compared to non-grafted monoliths) in all cases reaching values of 105, 80, 71, and 17 mg/ml, respectively. It was determined that the maximum pDNA capacity was reached using 0.1 M NaCl in the loading buffer. Recovery was comparable and no degradation of the supercoiled pDNA form was detected. Protein z-factors were equal for the non-grafted and grafted monolith indicating that the same number of binding sites are available although elution from the grafted monolith occurred at higher ionic strengths. The grafted monolith exhibited lower efficiency than the non-grafted ones. However, the baseline separation of pDNA from RNA and other impurities was achieved from a real sample.

Purchase full article

Full view

A. Jungbauer, R. Hahn

Journal of Chromatography A, 1184 (2008) 62–79(2008) 62 – 79

Monoliths are considered as the fourth-generation chromatography material. Their use for preparative separation of biomolecules has been evolved over the past decade. Monolithic columns up to 8 L in size are already commercially available for separation of large biomolecules such as proteins, protein aggregates, plasmid DNA, and viruses. These applications leverage monoliths’ inherent properties, such as fast operation and high capacity for large biomolecules. The height equivalent to a theoretical plate (HETP) and dynamic binding capacity do not change with velocity. This is explained by the convective transport through the channels with a diameter of above 1000 nm and has been experimentally verified and also supported by theoretical analyses. Despite low absolute surface area, these large channels provide enough area for adsorption of these large biomolecules, which cannot penetrate into conventional chromatography media designed for protein separation. Monoliths for preparative separations are mainly cast as polymethacrylate or polyacrylamide blocks and have been functionalized as ion exchangers or hydrophobic interaction chromatography media. So-called cryogels have channels more than 30 μm wide, enabling efficient processing of suspensions or even cell-chromatography. This review discusses the pressure drop characteristics, mass transfer properties, scale-up, and applications of monoliths in the context of conventional chromatography media.

Purchase full article

Full view

E. S. Sinitsyna, E. N. Vlasova, E. G. Vlakh, T. B. Tennikova

Russian Journal of Applied Chemistry, 2008, Vol. 81, No. 8, pp. 1403–1409

Copolymers containing aldehyde, succinimidyl carbonate, and imidazolecarbamate groups were prepared by polymer-analogous transformations of epoxy groups of a macroporous monolithic polymeric support derived from glycidyl methacrylate and ethylene glycol dimethacyrlate. The effect of certain parameters on the course of the copolymer modification and immobilization of a protein on the surface of the polymeric support was studied. The possibility of using the matrices obtained for development of biorecognizing systems was examined.

Purchase full article

Full view

M. Barut, A. Podgornik, L. Urbas, B. Gabor, P. Brne, J. Vidič, S. Plevčak, A. Štrancar

J. Sep. Sci. 2008, 31, 1867 – 1880

This review describes the novel chromatography stationary phase – a porous monolithic methacrylate-based polymer – in terms of the design of the columns and some of the features that make these columns attractive for the purification of large biomolecules. We first start with a brief summary of the characteristics of these large molecules (more precisely large proteins like immunoglobulins G and M, plasmid deoxyribonucleic acid (DNA), and viral particles), and a list of some of the problems that were encountered during the development of efficient purification processes. We then briefly describe the structure of the methacrylate-based monolith and emphasize the features which make them more than suitable for dealing with large entities. The highly efficient structure on a small scale can be transferred to a large scale without the need of making column modifications, and the various approaches of how this is accomplished are briefly presented in this paper. This is followed by presenting some of the examples from the bioprocess development schemes, where the implementation of the methacrylate-based monolithic columns has resulted in a very efficient and productive process. Following this, we move back to the analytical scale and demonstrate the efficiency of the monolithic column – where the mass transfer between the stationary and mobile phase is greatly enhanced – for the in-process and final control of the new therapeutics. The combination of an efficient structure and the appropriate hardware results in separations of proteins with residence time less than 0.1 s.

Purchase full article

Full view

M. Ćurković Perica, I. Šola, L. Urbas, F. Smrekar, M. Krajačić

Journal of Chromatography A 1216 (2009) 2712-2716

A procedure based on Sartorius BIA Separations CIM DEAE anion-exchange chromatography was developed to separate double-stranded (ds) RNA of hypovirus infecting phytopathogenic fungus Cryphonectria parasitica. Using a linear gradient of 25 mM 4-morpholinepropanesulfonic acid (MOPS), pH 7.0 as a binding buffer, and 25 mM MOPS, 1.5 M NaCl, 0.1 mM EDTA, 15% isopropanol (v/v), pH 7.0 as an elution buffer, hypoviral dsRNA was additionally purified from nucleic acid species present in preparations partially purified by standard CF-11 cellulose chromatography. Moreover, crude phenol/chloroform extracts of the fungal tissue were also applied to monolithic supports and CIM DEAE chromatograms revealed clear evidence for hypoviral presence without CF-11 chromatography, nucleic acid precipitation, and electrophoresis.

Purchase full article

Full view

J. Ivancic-Jelecki, M. Brgles, M. Šantak, D. Forčić

Journal of Chromatography A 1216 (2009) 2717-2724

Human plasma is an important medical substance and a raw material for production of various therapeutics. During blood sampling, storage and processing, genomic DNA is released into plasma from nucleated blood cells that are damaged in the course of the procedure. In order to determine the concentration of contaminating DNA in plasma, we developed a method for DNA isolation by using anion-exchange chromatography on a Sartorius BIA Separations CIM (convective interaction media) diethylaminoethyl column. DNA was quantified by SYBR Green based real-time polymerase chain reaction. The concentration of cell-free, non-apoptotic DNA in plasma ranged between 0.06 and 22.5 ng/ml. As substantial volumes of plasma or whole blood are administered directly into the vascular system, a recipient is exposed to high amounts of cell-free DNA, several orders of magnitude higher than the amount found in other biologicals.

Purchase full article

Full view

2007

R. Hahn, A. Tscheliessnig, P. Bauerhansl, A. Jungbauer

J. Biochem. Biophys. Methods 70 (2007) 87–94

Monolithic media have found widespread use as excellent tools for fast analytical separations of small molecules, proteins, pDNA and viruses. Polymethacrylate monoliths with large channels are attractive for capturing large molecules, like immunoglobulins, DNA, and viruses. For preparative purposes, these monoliths are operated in radial flow mode. Band spreading in monoliths is extremely low and mostly dominated by the contribution of extra column effects. The model used here had a single axial dispersion coefficient which lumps together extra column effects and the intrinsic band spreading of the monolithic material to characterize the adsorption of proteins and pDNA on polymethacrylate ion-exchange monoliths. Due to the fact that the performance of the monolith was unaffected by the velocity within the applied range, and due to highly favourable adsorption isotherms, a constant pattern model could be applied to predict preparative runs on radial flow units assuming axial flow for modelling.

Purchase full article

Full view

R. Skudas, B. A. Grimes, E. Machtejevas, V. Kudirkaite, O. Kornysova, T. P. Hennessy, D. Lubda, K. K. Unger

Journal of Chromatography A, 1144 (2007) 72-84(2007) 72 - 84

In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of ∼25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18 < C8 < C4. The resolution of proteins and peptides by reversed-phase gradient liquid chromatography on n-octadecyl, n-octyl, and n-butyl bonded monolithic silica columns is optimized. The results obtained imply the use of acetonitrile concentration gradient up to 75% for n-octadecyl and n-octyl bonded monolithic silica columns, and the use of acetonitrile concentration gradient up to 85% for n-butyl bonded monolithic silica columns. With the respect to the gradient times and flow rates, the optimum conditions are the best with n-octyl and n-butyl bonded monolithic silica columns, where the range of optimum gradient times is up to ∼30 min and mobile phase flow rates in the range of 0.5–1 ml/min. Consequently, the best performance towards peak resolution is obtained with n-octyl bonded monolithic silica column with the respect to low concentration of organic phase gradient, fast separations and low solvent consumptions due to low flow rates.

Purchase full article

Full view

J. Vidič, A. Podgornik, J. Jančar, V. Frankovič, B. Košir, N. Lendero, K. Čuček, M. Krajnc, A. Štrancar

Journal of Chromatography A, 1144 (2007) 63–71(2007) 63 – 71

Chemical and chromatographic stability of methacrylate-based monolithic columns bearing 3-N,N-diethylamino-2-hydroxypropyl (DEAE) and quarternary amine (QA) groups was studied. The leakage products from both monolithic columns were determined and the leakage of amines has been quantified in alkali solutions. Monolithic columns bearing QA functional groups being exposed to 1 M sodium hydroxide solution for up to 3 months caused reduction of ion-exchange groups for approximately 12%, while for DEAE monolithic columns was only around 3% in 1 year. In 0.1 M NaOH and 20% ethanol degradation was significantly lower. The main leaking compound from DEAE monolith was found to be 3-(diethylamino)-1,2-propanediol and 2,3-dihydroxypropyltrimethylammonium salt for QA monolith. During repeated 50 cleaning-in-place (CIP) cycles, no changes in chromatographic properties were detected.

Purchase full article

Full view

B. A. Grimes, R. Skudas, K. K. Unger, D. Lubda

Journal of Chromatography A, 1144 (2007) 14-29(2007) 14-29

In this work, a parallel pore model (PPM) and a pore network model (PNM) are developed to provide a state-of-art method for the calculation of several characteristic pore structural parameters from inverse size-exclusion chromatography (ISEC) experiments. The proposed PPM and PNM could be applicable to both monoliths and columns packed with porous particles. The PPM and PNM proposed in this work are able to predict the existence of the second inflection point in the experimental exclusion curve that has been observed for monolithic materials by accounting for volume partitioning of the polymer standards in the macropores of the column. The appearance and prominence of the second inflection point in the exclusion curve is determined to depend strongly on the void fraction of the macropores (flow-through pores), (b) the nominal diameter of the macropores, and (c) the radius of gyration of the largest polymer standard employed in the determination of the experimental ISEC exclusion curve. The conditions that dictate the appearance and prominence of the second inflection point in the exclusion curve are presented. The proposed models are applied to experimentally measured ISEC exclusion curves of six silica monoliths having different macropore and mesopore diameters. The PPM and PNM proposed in this work are able to determine the void fractions of the macropores and silica skeleton, the pore connectivity of the mesopores, as well as the pore number distribution (PND) and pore volume distribution (PVD) of the mesopores. The results indicate that the mesoporous structure of all materials studied is well connected as evidenced by the similarities between the PVDs calculated with the PPM and the PNM, and by the high pore connectivity values obtained from the PNM. Due to the fact that the proposed models can predict the existence of the second inflection point in the exclusion curves, the proposed models could be more applicable than other models for ISEC characterization of chromatographic columns with small diameter macropores (interstitial pores) and/or large macropore (interstitial pore) void fractions. It should be noted that the PNM can always be applied without the use of the PPM, since the PPM is an idealization that considers an infinitely connected porous medium and for materials having a low (<6) pore connectivity the PPM would force the PVD to a lower average diameter and larger distribution width as opposed to properly accounting for the network effects present in the real porous medium.

Purchase full article

Full view

I. Junkar, T. Koloini, P. Krajnc, D. Nemec, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1144 (2007) 48-54(2007) 48-54

Today, monoliths are well-accepted chromatographic stationary phases due to several advantageous properties in comparison with conventional chromatographic supports. A number of different types of monoliths have already been described, among them recently a poly(high internal phase emulsion) (PolyHIPE) type of chromatographic monoliths. Due to their particular structure, we investigated the possibility of implementing different mathematical models to predict pressure drop on PolyHIPE monoliths. It was found that the experimental results of pressure drop on PolyHIPE monoliths can best be described by employing the representative unit cell (RUC) model, which was originally derived for the prediction of pressure drop on catalytic foams. Models intended for the description of particulate beds and silica monoliths were not as accurate. The results of this study indicate that the PolyHIPE structure under given experimental condition is, from a hydrodynamic point of view, to some extent similar to foam structures, though any extrapolation of these results may not provide useful predictions of pressure versus flow relations and further experiments are required.

Purchase full article

Full view

S. Laschober, M. Sulyok, E. Rosenberg

Journal of Chromatography A, 1144 (2007) 55-62(2007) 55-62

The present work aims at the optimisation of the synthesis of methyl-silsesquioxane monolithic capillary columns using a sol–gel based protocol. The influence of reaction conditions such as temperature, reaction mixture composition and catalyst concentration has been examined. The morphology of the products was studied by scanning electron microscopy and nitrogen adsorption. Monolithic capillary columns were obtained with a skeleton-like structure with open pores. Pore diameters vary from 0.8 to 15 μm, diameters of the xerogel network vary from 0.4 to 12 μm, respectively. Specific surface areas up to 334 m2/g have been observed, however, many materials did not possess areas above few m2/g which represents the limit of detection of the nitrogen porosimetry measurements. Excellent adhesion to the capillary wall was observed in all cases, and drying was possible at ambient conditions without the formation of cracks.

Purchase full article

Full view

E. Machtejevas, S. Andrecht, D. Lubda, K. K. Unger

Journal of Chromatography A, 1144 (2007) 97-101

The following particulate and monolithic silica columns were implemented in a fully automated and flexible multidimensional LC/MS system with integrated sample clean-up, to perform the analysis of endogeneous peptides from filtered urine and plasma samples: restricted access sulphonic acid strong cation-exchanger (RAM-SCX) for sample clean-up, RP 18 Chromolith guard columns as trap columns and 100 μm I.D. monolithic RP 18 fused silica capillary columns as last LC dimension. The results show sufficient overall system reproducibility and repeatability. Implementation of monolithic silica columns added an additional flexibility with respect to flow rate variation and adjustment due to the low column back pressures. Also, monolithic columns showed a lower clogging rate in long-term usage for biological samples as compared to particulate columns. The applied system set-up was tested to be useful for the routine peptide screening in search of disease biomarkers.

Purchase full article

Full view

K. Benčina, M. Benčina, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1160 (2007) 176–183

The chromatography of mechanically sensitive macromolecules still represents a challenge. While larger pores can reduce the mechanically induced cleavage of large macromolecules and column clogging, the column performance inevitably decreases. To investigate the effect of pore size on the mechanical degradation of DNA, column permeability and enzyme biological activity, methacrylate monoliths with different pore sizes were tested. Monolith with a 143 nm pore radius mechanically damaged the DNA and was clogged at flow rates above 0.5 ml min−1 (26 cm h−1). For monoliths with a pore radius of 634 nm and 2900 nm, no mechanical degradation of DNA was observed up to 5 ml min−1 (265 cm h−1) above which the HPLC itself became the main source of damage. A decrease of a permeability appeared at flow rate 1.8 ml min−1 (95 cm h−1) and 2.3 ml min−1 (122 cm h−1), respectively. The effect of the pore size on enzyme biological activity was tested with immobilized DNase and trypsin on all three monoliths. Although the highest amount of enzyme was immobilized on the monolith with the smallest pores, monolith with the pore radius 634 nm exhibited the highest DNase biological activity probably due to restricted access for DNA molecules into the small pores. Interestingly, specific biological activity was increasing with a pore size decrease. This was attributed to higher number of contacts between a substrate and immobilized ligand.

Purchase full article

Full view

S. Yamamoto, M. Nakamura, C. Tarmann, A. Jungbauer

Journal of chromatography 1144 (2007) 155-160

Linear gradient elution experiments were carried out on monolithic anion-exchange chromatography (AEC) with oligo-DNAs of various sizes (4–50mer, molecular weight MW = 1200–15,000) and compositions in order to investigate the retention mechanism. The binding site (B) values as well as the peak salt elution concentration IR values were determined. The B values determined for the monolithic AEC were similar to the values for non-porous AEC and porous AEC. The B value increased linearly with the number of charges (bases) of single-strand DNA when MW is less than ca. 3600 (12mer). When MW is greater than 6000, the slope of B versus MW decreased, and became very small at MW > 30,000. The IR value also increased linearly with MW for MW < 6000, and slightly with MW for MW > 10,000. It was shown that a very difficult separation of a single-strand 50mer poly(T) and a double-strand 50mer poly(A) and poly(T) was accomplished within 10 min by using a very shallow gradient at a high initial salt concentration (0.5 M) and a high flow-velocity (2.7 cm/min).

Purchase full article

Full view

M. Brgles, B Halassy, J. Tomašić, M. Šantak, D. Forčić, M. Barut, A. Štrancar

Journal of Chromatography A 1144 (2007) 150-154

A high-performance liquid chromatography (HPLC) method for the determination of DNA entrapment efficiency in liposomes has been developed. Plasmid DNA was encapsulated into positively charged liposomes. Non-entrapped DNA was separated by ultracentrifugation from liposomes and supernatant was chromatographed on Convective Interaction Media (CIM) DEAE disk. The elution of DNA was monitored by the absorbance at 260 nm and the quantity of DNA in the tested sample was calculated from the integrated peak areas using the appropriate standard curve. This method is fast, simple, precise and does not require any kind of DNA labelling in contrast with mostly used methods for determination of DNA entrapment efficiency.

Purchase full article

Full view

2006

M. Krajačić, J. Ivancic-Jelecki, D. Forčić, A. Vrdoljak, D. Škorić

Journal of Chromatography A, 1144 (2007) 111-119

Replicative double-stranded RNA (dsRNA) is useful in preliminary identification of Cucumber mosaic virus and its satellite RNA (satRNA). This plant pathogen complex yields sufficient quantity of the replicative RNA form that can be isolated by chromatography on chemically unmodified graded cellulose powder (CF-11). In this work, much faster and more efficient procedure using DEAE monoliths was developed in which dsRNA was separated from other species in total nucleic acids extract originating from the infected plant tissue. The developed chromatographic method revealed the pathogens’ presence in only 15 min, avoiding nucleic acid precipitation and electrophoretic analysis.

Purchase full article

Full view

2005

M. Barut, A. Podgornik, P. Brne, A. Štrancar

J. Sep. Sci. 2005, 28, 1876-1892

New therapeutics that are being developed rely more and more on large and complex biomacromolecules like proteins, DNA, and viral particles. Manufacturing processes are being redesigned and optimized both upstream and downstream to cope with the ever-increasing demand for the above target molecules. In downstream processing, LC still represents the most powerful technique for achieving high yield and high purities of these molecules. In most cases, however, the separation technology relies on conventional particle-based technology, which has been optimized for the purification of smaller molecules. New technologies are, therefore, needed in order to push the downstream processing ahead and into the direction that will provide robust, productive, and easy to implement methods for the production of novel therapeutics. New technologies include the renaissance of membranes, various improvements of existing technologies, but also the introduction of a novel concept – the continuous bed or monolithic stationary phases. Among different introduced products, Convective Interaction Media short monolithic columns (SMC) that are based on methacrylate monoliths exhibit some interesting features that make them attractive for these tasks. SMC can be initially used for fast method development on the laboratory scale and subsequently efficiently transferred to preparative and even more importantly to industrial scale. A brief historical overview of methacrylate monoliths is presented, followed by a short presentation of theoretical considerations that had led to the development of SMC. The design of these columns, as well as their scale-up to large units, together with the methods for transferring gradient separations from one scale to another are addressed. Noninvasive methods that have been developed for the physical characterization of various batches of SMC, which fulfill the regulatory requirements for cGMP production, are discussed. The applications of SMC for the separation and purification of large biomolecules, which demonstrate the full potential of this novel technology for an efficient downstream processing of biomolecules, are also presented.

Purchase full article

Full view