On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2009

A. Tscheliessnig, D. Ong, J. Lee, S. Pan, G. Satianegara, K. Schriebl, A. Choo, A. Jungbauer

Journal of Chromatography A, 1216 (2009) 7851–7864

A two-step purification strategy comprising of polyethylene glycol (PEG) precipitation and anion-exchange chromatography was developed for a panel of monoclonal immunoglobulin M (IgM) (pI 5.5–7.7) produced from hybridoma cultures. PEG precipitation was optimized with regards to concentration, pH and mixing. For anion-exchange chromatography, different resins were screened of which Fractogel EMD, a polymer grafted porous resin had the highest capacity. Despite its significantly slower mass transfer, the binding capacity was still higher compared to a convection driven resin (monolith). This purification strategy was successfully demonstrated for all 9 IgMs in the panel. In small scale most antibodies could be purified to >95% purity with the exception of two which gave a lower final purity (46% and 85%). The yield was dependent on the different antibodies ranging from 28% to 84%. Further improvement of recovery and purity was obtained by the digestion of DNA present in the hybridoma supernatant using an endonuclease, benzonase. So far this strategy has been applied for the purification of up to 2 l hybridoma supernatants.

Purchase full article

Full view

K. Ralla, F. Anton, T. Scheper, C. Kasper

Journal of Chromatography A, 1216 (2009) 2671-2675

The aim of this study was to develop a chromatographic method, as a substitute for enzyme-linked immunosorbent assays, for the rapid and simultaneous detection of IgG, insulin, and transferrin present in a cell culture medium. Conjoint liquid chromatography (conjoint LC) using monolithic disks was applied for this purpose. An anion-exchange disk was combined with a Protein G affinity disk in a preparative HPLC system. IgG bound to the Protein G disk, whereas transferrin and insulin were captured on the quaternary ammonium (QA) disk. Using this method, it was possible to simultaneously determine the concentrations of IgG, transferrin, and insulin in the cell culture medium. Thus, conjoint LC could be used for the rapid and simultaneous detection of different proteins present in a cell culture medium.

Purchase full article

Full view

A. Tscheliessnig, A. Jungbauer

Journal of Chromatography A, 1216 (2009) 2676-2682

High-performance monolith affinity chromatography employing protein A resins has been introduced previously for the fast purification of IgG from different sources. Here we describe the design and evaluation of a fast and specific method for quantitation of IgG from purified samples as well as crude supernatant from Chinese hamster ovary (CHO) cells. We used a commercially available affinity monolith with protein A as affinity ligand (CIM protein A HLD disk). Interferences of CHO host cell proteins with the quantitation of IgG from CHO supernatant were eliminated by a careful choice of the equilibration buffer. With this method developed, it is possible to quantify IgG within 5 min in a concentration range of 23–250 μg/ml. The calibration range of the method could be extended from 4 to 1000 μg/ml by adjusting the injection volume. The method was successfully validated by measuring the low limit of detection and quantification, inter- and intra-day precision and selectivity.

Purchase full article

Full view

L. Urbas, P. Brne, B. Gabo, M. Barut, M. Strlič, T. Čerk Petrič, A. Štrancar

Journal of Chromatography A, 1216 (2009) 2689–2694

Human serum albumin (HSA) and immunoglobulin G (IgG) represent over 75% of all proteins present in human plasma. These high-abundance proteins prevent the detection of low-abundance proteins which are potential markers for various diseases. The depletion of HSA and IgG is therefore essential for further proteome analysis. In this paper we describe the optimization of conditions for selective depletion of HSA and IgG using affinity and pseudo-affinity chromatography. A Sartorius BIA Separations CIM (convective interaction media) Protein G disk was applied for the removal of IgG and the Mimetic Blue SA A6XL stationary phase for the removal of HSA. The binding and the elution buffer for CIM Protein G disk were chosen on the basis of the peak shape. The dynamic binding capacity was determined. It was shown to be dependent on the buffer system used and independent of the flow rate and of the concentration of IgG. Beside the binding capacity for the IgG standard, the binding capacity was also determined for IgG in human plasma. The Mimetic Blue SA A6XL column was characterized using human plasma. The selectivity of the depletion was dependent on the amount of human plasma that was loaded on the column. After the conditions on both supports had been optimized, the Mimetic Blue SA A6XL stationary phase was combined with the CIM Protein G disk in order to simultaneously deplete samples of human plasma. A centrifuge spin column that enables the removal of IgG and HSA from 20 μL of human plasma was designed. The results of the depletion were examined using sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis.

Purchase full article

Full view

A. Tscheliessnig, A. Jungbauer

Journal of Chromatography A, 1216 (2009) 2676–2682

High-performance monolith affinity chromatography employing protein A resins has been introduced previously for the fast purification of IgG from different sources. Here we describe the design and evaluation of a fast and specific method for quantitation of IgG from purified samples as well as crude supernatant from Chinese hamster ovary (CHO) cells. We used a commercially available affinity monolith with protein A as affinity ligand (CIM protein A HLD disk). Interferences of CHO host cell proteins with the quantitation of IgG from CHO supernatant were eliminated by a careful choice of the equilibration buffer. With this method developed, it is possible to quantify IgG within 5 min in a concentration range of 23–250 μg/ml. The calibration range of the method could be extended from 4 to 1000 μg/ml by adjusting the injection volume. The method was successfully validated by measuring the low limit of detection and quantification, inter- and intra-day precision and selectivity.

Purchase full article

Full view

J. Krenkova, A. Gargano, N. A. Lacher, J. M. Schneiderheinze, F. Svec

Journal of Chromatography A, 1216 (2009) 6824–6830

Poly(glycidyl methacrylate-co-ethylene methacrylate) monoliths have been prepared in 100 μm i.d. capillaries and their epoxy groups hydrolyzed to obtain poly(2,3-dihydroxypropyl methacrylate-co-ethylene methacrylate) matrix. These polymers were then photografted in a single step with 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylic acid to afford stationary phases for a strong and a weak cation exchange chromatography, respectively. Alternatively, poly(ethylene glycol) methacrylate was used for grafting in the first step in order to enhance hydrophilicity of the support followed by photografting with 2-acrylamido-2-methyl-1-propanesulfonic acid or acrylic acid in the second step. These new columns were used for the separation of proteins and peptides. A mixture of ovalbumin, α-chymotrypsinogen, cytochrome c, ribonuclease A and lysozyme was used to assess the chromatographic performance for large molecules while a cytochrome c digest served as a model mixture of peptides. All tested columns featured excellent mass transfer as demonstrated with very steep breakthrough curves. The highest binding capacities were found for columns prepared using the two step functionalization. Columns with sulfonic acid functionalities adsorbed up to 21.5 mg/mL lysozyme while the capacity of the weak cation exchange column functionalized with acrylic acid was 29.2 mg/mL.

Purchase full article

Full view

K. Kovač, I. Gutierrez-Aguirre, M. Banjac, M. Peterka, M. Poljšak-Prijatelj, M. Ravnikar, J. Zimšek Mijovski, A. C. Schultze, P. Raspor

Journal of Virological Methods 162 (2009) 272–275

Human enteric viruses are detected frequently in various types of environmental water samples, such as irrigation water, wastewater, recreational water, ground or subsurface water and even drinking water, constituting a primary source of gastroenteritis or hepatitis outbreaks. Only a few, but still infective number of viral particles are normally present in water samples, therefore an efficient virus concentration procedure is essential prior to molecular detection of the viral nucleic acid. In this study, a novel chromatographic technology, Convective Interaction Media® (CIM) monolithic supports, were optimized and applied to the concentration of hepatitis A virus (HAV) and feline calicivirus (FCV), a surrogate of norovirus (NoV), from water samples. Two-step real-time RT-qPCR was used for quantitation of the virus concentration in the chromatographic fractions. Positively charged CIM QA (quaternary amine) monolithic columns were used for binding of HAV and FCV present in previously inoculated 1.5 l bottled water samples. Column bound viruses were eluted from the monolith using 1 M NaCl to a final volume of 15 ml. Elution volume was concentrated further by ultracentrifugation. When the CIM/ultracentrifugation method was compared with another concentration method employing positively charged membranes and ultrafiltration, the recovery of HAV was improved by approximately 20%.

Purchase full article

Full view

E. I. Trilisky, H. Koku, K. J. Czymmek, A. M. Lenhoff

Journal of Chromatography A, 1216 (2009) 6365–6376

Commercially available polymer-based monolithic and perfusive stationary phases were evaluated for their applicability in chromatography of biologics. Information on bed geometry, including that from electron microscopy (EM), was used to interpret and predict accessible volumes, binding capacities, and pressure drops. For preparative purification of biologics up to at least 7 nm in diameter, monoliths and perfusive resins are inferior to conventional stationary phases due to their low binding capacities (20–30 g/L for BSA). For larger biologics, up to several hundred nanometers in diameter, calculations from EM images predict a potential increase in binding capacity to nearly 100 g/L. The accessible volume for adenovirus calculated from the EM images matched the experimental value. While the pores of perfusive resins are essentially inaccessible to adenovirus under binding conditions, under non-adsorbing conditions the accessible intrabead porosity is almost as large as the interbead porosity. Modeling of breakthrough curves showed that the experimentally observed slow approach to full saturation can be explained by the distribution of pore sizes.

Purchase full article

Full view

M. R. Etzel, W. T. Riordan

Jorunal of Chromatography A 1216 (2009) 2621-2624

Clearance of biological impurities is an essential part of the manufacture of biotechnology-derived products such as monoclonal antibodies (mAbs). Salt is required during manufacture to solubilize the mAb product and stabilize it against aggregation, but salt can be a problem later during impurity clearance operations. In this work, the use of a traditional quaternary amine (Q) monolith, and a new salt-tolerant monolith were evaluated for the clearance of pathogenic impurities including viruses, DNA, and host-cell protein (HCP). The impact of flow rate, salt concentration, and presence of mixtures of impurities in the feed stream were evaluated. Both monoliths cleared DNA to the limit of detection at all salt concentrations, and both cleared virus and HCP equally well at no salt. At intermediate salt, clearance of HCP was greater for the salt-tolerant monolith, and only the salt-tolerant monolith cleared virus at elevated salt. In conclusion, monoliths successfully trapped impurities such as DNA, host-cell protein, and viruses, and at flow rates far greater than traditional chromatography columns packed with beads.

Purchase full article

Full view

R. J. Whitfield, S. E. Battom, M. Barut, D. E. Gilham, P. D. Ball

Journal of Chromatography A, 1216 (2009) 2725-2729

To support effective process development there is a requirement for rapid analytical methods that can identify and quantitate adenoviral particles throughout the manufacturing process, from cellular lysate through to purified adenovirus. An anion-exchange high-performance liquid chromatography method for the analysis of adenovirus type 5 (Ad5) particles has been developed using a novel quaternary amine monolithic column (Bio-Monolith QA, Agilent). The developed method separates intact Ad5 from contaminating proteins and DNA, thus allowing analysis of non-purified samples during process development. Regeneration conditions were incorporated to extend the functional life of the column. Once developed, the method was qualified according to performance criteria of repeatability, intermediate precision and linearity. The linear working range of analysis was established between 7.5 × 108 to at least 2.4 × 1010 viral particles (3 × 1010 to 9.6 × 1011 viral particles/mL), with a correlation coefficient of 0.9992. Relative standard deviations (RSDs) for intra- and inter-day repeatability and precision for retention time and peak area were less than 1 and 2.5%, respectively.

Purchase full article

Full view

M. C. Cheeks, N. Kamal, A. Sorrel, D. Darling, F. Farzaneh, N. K. H. Slater

Journal of Chromatography A, 1216 (2009) 2705–2711

Histidine-tagged lentiviral vectors were separated from crude cell culture supernatant using labscale monolithic adsorbents by immobilized metal affinity chromatography. The capture capacity, concentration factor, purification factor, and elution efficiency of a supermacroporous cryogel monolith were evaluated against the Sartorius BIA Separations convective interaction media (CIM) disc, which is a commercial macroporous monolith. The morphology of the polymeric cryogel material was characterised by scanning electron microscopy. Iminodiacetic acid was used as the metal chelating ligand in both monoliths and the chelating capacity for metal ions was found to be comparable. The CIM-IDA-Ni2+ adsorbent had the greatest capture capacity (6.7 × 108 IU/ml of adsorbent), concentration factor (1.3-fold), and elution efficiency (69%). Advantages of the cryogel monoliths included rapid, low pressure processing as well low levels of protein and DNA in the final purified vector preparations.

Purchase full article

Full view

I. Gutiérrez-Aguirre, M. Banjac, A. Steyer, M. Poljšak-Prijatelj, M. Peterka, A. Štrancar, M. Ravnikar

Journal of Chromatography A, 1216 (2009) 2700–2704

Rotaviruses are the leading cause of diarrhoea in infants around the globe and, under certain conditions they can be present in drinking water sources and systems. Ingestion of 10–100 viral particles is enough to cause disease, emphasizing the need for sensitive diagnostic methods. In this study we have optimized the concentration of rotavirus particles using methacrylate monolithic chromatographic supports. Different surface chemistries and mobile phases were tested. A strong anion exchanger and phosphate buffer (pH 7) resulted in the highest recoveries after elution of the bound virus with 1 M NaCl. Using this approach, rotavirus particles spiked in 1 l volumes of tap or river water were efficiently concentrated. The developed concentration method in combination with a real time quantitative polymerase chain reaction assay detected rotavirus concentrations as low as 100 rotavirus particles/ml.

Purchase full article

Full view

C. Delattre, M. A. Vijayalakshmi

Journal of Molecular Catalysis B: Enzymatic 60 (2009) 97–105

Recent research in the area of bioactive carbohydrates has shown the efficiency of oligosaccharides as signal molecules in a lot of biological activities. Newly observed functions of oligosaccharides and their abilities to act as specific regulatory molecules on various organisms have been more and more described. A successful development of these bioactive molecules in future needs efficient processes for specific oligosaccharides production. To exploit them for putative industrial scale up processes, two main strategies are currently investigated: the synthesis (chemical or bioconversion processes) and the polysaccharide cleavage (chemical, physical or biological processes). Nevertheless, if new manufacturing biotechnologies have considerably increased the development of these functional molecules, the main drawback limiting their biological applications is the complexity to engender specific glycosidic structures for specific activities. In the recent years, new enzymatic reactors have been developed, allowing the automatic synthesis of oligosaccharide structures. This review focuses on the knowledge in the area of bioactive oligosaccharides and gives the main processes employed to generate them for industrial applications with challenges of monolith microreactors.

Purchase full article

Full view

2008

P. Gagnon

MSS2008

When monoclonal antibodies were first beginning to be commercialized, expression levels over 100 mg/L were considered outstanding, and cell culture was viewed as the bottleneck in manufacturing productivity. Antibody expression levels now commonly exceed 1 g/L and reports of 10 and 15 g/L have been recently announced. Downstream processing is now considered the bottleneck.

In one sense, the bottleneck is artificial. Cell culture production takes about two weeks (not counting preparation of seed stock) and purification takes about a week. In another sense, the bottleneck is real, and a genuine concern. Process time for the protein A capture step from 20,000 L of cell culture supernatant (CCS) commonly requires 72-96 hours. This represents multiple cycles. The long hold time for IgG produced in the early cycles increases the risk of degradation by proteolysis, deamidation, etc. It also increases the risk of contamination.

Read full presentation

Full view

F. Smrekar, M. Ciringer, M. Peterka, A. Podgornik, A. Štrancar

Journal of Chromatography B, (2007)

Phages are gaining importance due to their wide usage. In this work strong anion exchange monolithic chromatographic column was used for single step phage purification. Most of the proteins and DNA were removed and recovery of approximately 70% of infective virus was reproducibly achieved. 30 ml of phage sample was purified in around 10 min.

Purchase full article

Full view

I. V. Kalashnikova, N. D. Ivanova, T. B. Tennikova

Russian Journal of Applied Chemistry, 2008, Vol. 81, No. 5, pp. 867-873

A simple virus-cell complementary model system can be obtained using polymer-analogous reactions of the epoxy groups of glycidyl methacrylate-ethylene glycol dimethacrylate monolithic macroporous polymeric support and of the carboxy groups of styrene-methyl methacrylate polymeric nanospheres. The effect of thus designed microenvironment on the affinity binding parameters of virus-mimicking nanoparticles with the functionalized sorbent surface is studied by high-performance monolithic disk affinity chromatography.

Purchase full article

Full view

S. Likić, G. Rusak, M. Krajačić

Journal of Chromatography A, 1189 (2008) 451–455

High-performance liquid chromatography was developed for further separation of double-stranded (ds) RNAs obtained by CF-11 cellulose chromatography from plants infected with satellite associated cucumber mosaic virus. Fractions separated by monolithic polymer column, especially applicable for nucleic acid analyses, were identified electrophoretically and confirmed with a polymerase chain reaction test. Once standardized, the method has revealed clear evidence of satellite presence without precipitation and electrophoresis. According to demonstrated sensitivity, its application in the preliminary diagnostics of field samples is also predictable. Principally, it can be used as a powerful preparative approach resulting in highly pure satellite dsRNA for further analyses.

Purchase full article

Full view

C. Delattre, P. Michaud, M. A. Vijayalakshmi

Journal of Chromatography B, 861 (2008) 203–208

Fast production and purification of α-(1,4)-oligogalacturonides was investigated using a new enzymatic reactor composed of a monolithic matrix. Pectin lyase from Aspergillus japonicus (Sigma) was immobilized on CIM-disk epoxy monolith. Studies were performed on free pectin lyase and immobilized pectin lyase to compare the optimum temperature, optimum pH, and thermal stability. It was determined that optimum temperature for free pectin lyase and immobilized pectin lyase on monolithic support is 30 °C, and optimum pH is 5. Monolithic CIM-disk chromatography is one of the fastest liquid chromatographic method used for separation and purification of biomolecules due to high mass transfer rate. In this context, online one step production and purification of oligogalacturonides was investigated associating CIM-disk pectin lyase and CIM-disk DEAE. This efficient enzymatic bioreactor production of uronic oligosaccharides from polygalacturonic acid (PGA) constitutes an original fast process to generate bioactive oligouronides.

Purchase full article

Full view

2007

K. Isobe, Y. Kawakami

Journal of Chromatography A, 1144 (2007) 85-89(2007) 85-89

A convection interaction media (trade name CIM, Sartorius BIA Separation, Ljubljana, Slovenia) isobutyl monolithic disc was prepared by incubating a CIM epoxy monolithic disc with isobutylamine, and it was then applied to the purification of secondary alcohol dehydrogenase (S-ADH) and primary alcohol oxidase (P-AOD). Both enzymes were adsorbed on this column and eluted with high purity. Thus, S-ADH was purified to an electrophoretically homogeneous state by four column chromatographies using CIM DEAE-8 and CIM C4-8 tube monolithic columns, blue-Sepharose column and CIM isobutyl disc monolithic column. P-AOD was also purified to an electrophoretically homogeneous state by three column chromatographies of CIM DEAE-8 tube, CIM C4-8 tube and CIM isobutyl disc columns.

Purchase full article

Full view

I. V. Kalashnikova, N. D. Ivanova, T. G. Evseeva, A. Yu. Menshikova, E. G. Vlakh, T. B. Tennikova

Journal of Chromatography A, 1144 (2007) 40–47(2007) 40–47

The subject of this paper is an investigation of the peculiarities of dynamic adsorption behavior of nanoparticles. For this purpose, virus-mimicking synthetic particles bearing different proteins at their outer surface were specially constructed using two approaches, e.g. the cross-linking of proteins and modification of polystyrene microsphere surface by proteins. Two chromatographic modes, namely ion-exchange and affinity liquid chromatography on ultra-short monolithic columns [Convective Interaction Media (CIM) DEAE and CIM QA disks] have been used as a tool for dynamic adsorption experiments. Such parameters as maximum adsorption capacity and its dependence on applied flow rate were established and compared with those obtained for individual proteins. Similarly to individual proteins, it was shown that the maximum of adsorption capacity was not changed at different flow rates. In addition, the permeability of porous space of used monolithic sorbents appeared to be sufficient for efficient separation of large particles and quite similar to the well-studied process applied for individual proteins.

Purchase full article

Full view