On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2011

F. Smrekar, M. Ciringer, J. Jančar, P. Raspor, A. Štrancar, A. Podgornik

Journal of Separation Science 2011, 34, 2152-2158

A process for manufacturing large quantities of lytic bacteriophages was developed. Determination of cultivation termination was found to be essential to achieve high phage quantity and purity. When optimal cultivation termination is missed, phage fraction was found to be highly contaminated with deoxyribonucleic acid released from Escherichia coli cells. Besides, an already established method for monitoring of phage cultivation based on optical density, where its peak indicates point when maximal phage titer is achieved, a new indirect chromatographic method using methacrylate monoliths is proposed for on-line estimation of phage titer. It is based on the measurement of released E. coli deoxyribonucleic acid and shows high correlation with phage titer obtained from plaque assay. Its main advantage is that the information is obtained within few minutes. In addition, the same method can also be used to determine purity of a final phage fraction. Two strategies to obtain highly pure phage fractions are proposed: an immediate purification of phage lysate using monolithic columns or an addition of EDTA before chromatographic purification. The developed protocol was shown to give phage purity above 90% and it is completed within one working day including cultivation and phage titer in the final formulation using developed chromatographic method.

Purchase full article

Full view

C. Burden, J. Jin, A. Podgornik, D. G. Bracewell

Journal of Chromatography B, 880 (2012) 82- 89

Monoliths are an alternative stationary phase format to conventional particle based media for large biomolecules. Conventional resins suffer from limited capacities and flow rates when used for viruses, virus-like particles (VLP) and other nanoplex materials. The monolith structure provides a more open pore structure to improve accessibility for these materials and better mass transport from convective flow and reduced pressure drops. To examine the performance of this format for bioprocessing we selected the challenging capture of a VLP from clarified yeast homogenate. Using a recombinant Saccharomyces cerevisiae host it was found hydrophobic interaction based separation using a hydroxyl derivatised monolith had the best performance. The monolith was then compared to a known beaded resin method, where the dynamic binding capacity was shown to be three-fold superior for the monolith with equivalent 90% recovery of the VLP. To understand the impact of the crude feed material confocal microscopy was used to visualise lipid contaminants, deriving from the homogenised yeast. It was seen that the lipid formed a layer on top of the column, even after regeneration of the column with isopropanol, resulting in increasing pressure drops with the number of operational cycles. Removal of the lipid pre-column significantly reduces the amount and rate of this fouling process. Using Amberlite/XAD-4 beads around 70% of the lipid was removed, with a loss of VLP around 20%. Applying a reduced lipid feed versus an untreated feed further increased the dynamic binding capacity of the monolith from 0.11 mg/mL column to 0.25 mg/mL column.

Read full article

Full view

L. Urbas, B. Lah Jarc, M. Barut, M. Zochowska, J. Chroboczek

Journal of Chromatography A, 1218 (2011) 2451-2459

Adenovirus type 3 dodecahedric virus-like particles (Ad3 VLP) are an interesting delivery vector. They penetrate animal cells in culture very efficiently and up to 300,000 Ad3 VLP can be observed in one cell. The purification of such particles usually consists of several steps. In these work we describe the method development and optimization for the purification of Ad3 VLP using the Convective Interaction Media analytical columns (CIMac). Results obtained with the CIMac were compared to the already established two-step purification protocol for Ad3 VLP based on sucrose density gradient ultracentifugation and the Q-Sepharose ion-exchange column. Pure, concentrated and bioactive VLP were obtained and characterized by several analytical methods. The recovery of the Ad3 VLP was more than 50% and the purified fraction was almost completely depleted of DNA; less than 1% of DNA was present. The purification protocol was shortened from five days to one day and remarkably high penetration efficacy of the CIMac-purified vector was retained. Additionally, CIMac QA analytical column has proven to be applicable for the final and in-process control of various Ad3 VLP samples.

Purchase full article

Full view

A. Trauner, M. H. Bennett, H. D. Williams

PLoS ONE 6(2): e16273. doi:10.1371/ journal.pone.0016273

We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology.

Purchase full article

Full view

M. J. Shin, L. Tan, M. H. Jeong, J.-H. Kim, W.-S. Choe

Journal of Chromatography A, 1218 (2011) 5273-5278

Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl2-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification.

Purchase full article

Full view

2010

M. Abe, P. Akbarzaderaleh, M. Hamachi, N. Yoshimoto, S.Yamamoto

Biotechnol. J. 2010, 5, 477-483

The retention and binding mechanisms in electrostatic interaction-based chromatography (ion-exchange chromatography) of PEGylated proteins (covalent attachment of polyethylene glycol chains to protein) were investigated using our previously developed model. Lysozyme and bovine serum albumin were chosen as model proteins. The retention volume of PEGylated proteins shifted to lower elution volumes with increasing PEG molecular weight compared with the non-modified (native) protein retention volume. However, PEGylation did not affect the number of binding sites appreciably. The enzyme activity of PEGylated lysozyme measured with a standard insoluble substrate in suspension decreased considerably, whereas the activity with a soluble small-molecule substrate did not drop significantly. These findings indicate that when a protein is mono-PEG-ylated, the binding site is not affected and the elution volume reduces due to the steric hindrance between PEGylated protein and ion-exchange ligand.

Read full article

Full view

R. Nian, D. S. Kim, T. Nguyen, L. Tan, C.-W. Kim, I.-K. Yoo, W. S. Choe

Journal of Chromatography A, 1217 (2010) 5910-5949

Toxic heavy metal pollution is a global problem occurring in air, soil as well as water. There is a need for a more cost effective, renewable remediation technique, but most importantly, for a recovery method that is selective for one specific metal of concern. Phage display technology has been used as a powerful tool in the discovery of peptides capable of exhibiting specific affinity to various metals or metal ions. However, traditional phage display is mainly conducted in batch mode, resulting in only one equilibrium state hence low-efficiency selection. It is also unable to monitor the selection process in real time mode. In this study, phage display technique was incorporated with chromatography procedure with the use of a monolithic column, facilitating multiple phage-binding equilibrium states and online monitoring of the selection process in search of affinity peptides to Pb2+. In total, 17 candidate peptides were found and their specificity toward Pb2+ was further investigated with bead-based enzyme immunoassay (EIA). A highly specific Pb2+ binding peptide ThrAsnThrLeuSerAsnAsn (TNTLSNN) was obtained. Based on our knowledge, this is the first report on a new chromatographic biopanning method coupled with monolithic column for the selection of metal ion specific binding peptides. It is expected that this monolith-based chromatographic biopanning will provide a promising approach for a high throughput screening of affinity peptides cognitive of a wide range of target species.

Purchase full article

Full view

R. R. Prasanna, M. A. Vijayalakshmi

Journal of Chromatography A, 1217 (2010) 3660–3667

Dynamic binding capacity (DBC) of commercial metal-chelate methacrylate monolith-convective interaction media (CIM) was performed with commercial human immunoglobulin G (IgG) (Cohn fraction II, III). Monoliths are an attractive stationary phase for purification of large biomolecules because they exhibit very low back pressure even at high flow rates and flow-unaffected binding properties. Adsorption of IgG onto CIM-IDA disk immobilized with Cu2+, Ni2+ and Zn2+ were studied with Tris-acetate (TA), phosphate-acetate (PA) and MMA (MES, MOPS and acetate) buffer systems at different flow rates. Adsorption and elution of IgG varied with different buffers and adsorption of IgG was maximum with MMA buffer. Adsorption of human IgG from Cohn fractions (II, III) was high when Cu2+ was used as ligand. CIM-IDA disk showed dynamic binding capacity in the range of 14–16 mg/ml with Cu2+ and 7–9 mg/ml with Ni2+ for human IgG with MMA buffer. In the case of CIM-IDA-Zn2+ column, the binding capacity was only about 0.5 mg/ml of support. Different desorption strategies like lowering of pH and increasing of competitive agent were also studied to achieve maximum recovery. Chromatographic runs with human serum and mouse ascites fluid were also carried out with metal chelate methacrylate monolithic disk and the results indicate the potential of this technique for polyclonal human IgG and monoclonal IgG purification from complex biological samples.

Purchase full article

Full view

A. Dhivya, B. Kumar, R. Prasanna, N. Vijayalakshmi

Chromatographia 2010, 72, December (No. 11/12), pg 1183-1188

Purified monoclonal antibodies (mAb) have been used in therapeutics and some analytical procedures. Purification of mAb by use of high-throughput anion-exchange methacrylate monolithic systems has been attempted in this work. Monolithic macroporous convective interaction media (CIM) with diethylaminoethyl (DEAE) and ethylene diamine (EDA) as anion-exchange ligands were used and evaluated for purification of anti-glycophorin-A IgG1 mouse mAbs from cell culture supernatant (CCS) after precipitation with 50% ammonium sulfate. The adsorption and elution of mAb from the CCS on CIM-DEAE and CIM-EDA disks were studied with three different buffer systems, acetate, MOPS (3-(N-morpholino)propanesulfonic acid), and Tris, to study the effect of the nature of buffer ions and to find the optimum buffer conditions for purification of mAb. The optimum buffers for purification of mAb using CIM-DEAE and CIM-EDA were 50 mM acetate buffer, pH 5.1 and 20 mM Tris buffer, pH 8.0, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA) showed the antibody fractions obtained were highly pure, with high antigen-binding efficiency. High specific activity with purification factors of 130 ± 34 (unretained fraction with acetate buffer) and 74 ± 13 (fraction eluted with Tris buffer containing 0.6 M NaCl) was obtained for IgG1 using the CIM-DEAE and CIM-EDA disks, respectively. The results indicate that rapid separation and efficient recovery of high-purity anti-glycophorin-A mAbs could be achieved by use of anion-exchange CIM disks.

Purchase full article

Full view

F. Smrekar, A. Podgornik, M. Ciringer, S. Kontrec, P. Raspor, A. Štrancar, M. Peterka

Vaccine 28 (2010) 2039–2045

Plasmid DNA (pDNA) used in vaccination and gene therapy has to be highly pure and homogenous, which point out necessity to develop efficient, reproducible and scalable downstream process. Convective Interaction Media (CIM) monolithic chromatographic supports being designed for purification of large molecules and nanoparticles seem to be a matrix of choice for pDNA purification. In present work we describe a pDNA purification process designed on two different CIM monolithic columns, based on anion-exchange (AEX) chromatography and hydrophobic interaction chromatography (HIC) chemistry. HIC monolith enabled separation of supercoiled (sc) pDNA from open circular (oc) pDNA, genomic DNA (gDNA) and endotoxins regardless to flow rates in the range at least up to 380 cm/h. Dynamic binding capacity of new HIC monolith is up to 4 mg of pDNA per milliliter of support. Combination of both chromatographic steps using optimized CaCl2 precipitation enabled production of pure pDNA, satisfying all regulatory requirements. Process was found to be reproducible, scalable, and exhibits high productivity. In addition, in-line monitoring of pDNA purification process is shown, using CIM DEAE disk monolithic columns.

Purchase full article

Full view

N. Lendero Krajnc, F. Smrekar, A. Štrancar, A. Podgornik

Journal of Chromatography A, 1218 (2011) 2413-2424

The objective of this study was to investigate the behavior of large plasmids on the monolithic columns under binding and nonbinding conditions. The pressure drop measurements under nonbinding conditions demonstrated that the flow velocities under which plasmid passing monolith became hindered by the monolithic pore structure depended on the plasmid size as well as on the average monolith pore size; however, they were all very high exceeding the values encountered when applying CIM monolithic columns at their maximal flow rate. The impact of the ligand density and the salt concentration in loading buffer on binding capacity of the monolith for different sized plasmids was examined. For all plasmids the increase of dynamic binding capacity with the increase of salt concentration in the loading solution was observed reaching maximum of 7.1 mg/mL at 0.4 M NaCl for 21 kbp, 12.0 mg/mL at 0.4 M NaCl for 39.4 kbp and 8.4 mg/mL at 0.5 M NaCl for 62.1 kbp. Analysis of the pressure drop data measured on the monolithic column during plasmid loading revealed different patterns of plasmid binding to the surface, showing “car-parking problem” phenomena under certain conditions. In addition, layer thickness of adsorbed plasmid was estimated and at maximal dynamic binding capacity it matched calculated plasmid radius of gyration. Finally, it was found that the adsorbed plasmid layer acts similarly as the grafted layer responding to changes in solution's ionic strength as well as mobile phase flow rate and that the density of plasmid layer depends on the plasmid size and also loading conditions.

Purchase full article

Full view

H. P. Lesch, A. Laitinen, C. Peixoto, T. Vicente, K.-E. Makkonen, L. Laitinen, J. T. Pikkarainen

Gene Therapy advance online publication, 20 January 2011

Lentivirus can be engineered to be a highly potent vector for gene therapy applications. However, generation of clinical grade vectors in enough quantities for therapeutic use is still troublesome and limits the preclinical and clinical experiments. As a first step to solve this unmet need we recently introduced a baculovirus-based production system for lentiviral vector (LV) production using adherent cells. Herein, we have adapted and optimized the production of these vectors to a suspension cell culture system using recombinant baculoviruses delivering all elements required for a safe latest generation LV preparation. High-titer LV stocks were achieved in 293T cells grown in suspension. Produced viruses were accurately characterized and the functionality was also tested in vivo. Produced viruses were compared with viruses produced by calcium phosphate transfection method in adherent cells and polyethylenimine transfection method in suspension cells. Furthermore, a scalable and cost-effective capture purification step was developed based on a diethylaminoethyl monolithic column capable of removing most of the baculoviruses from the LV pool with 65% recovery.

Purchase full article

Full view

I. Gutierrez-Aguirrea, A. Steyer, M. Banjac, P. Kramberger, M. Poljšak-Prijatelj, M. Ravnikar

Journal of Chromatography A, 1218 (2011) 2368-2373

Rotaviruses are the leading cause of gastroenteritis in children and they exist widely in water environments. Ingestion of 10–100 viral particles is enough to initiate disease, what calls for extremely sensitive detection methods. In this study we have confirmed the validity of a recently published method for rotavirus concentration and detection based on the combination of methacrylate monoliths and real-time reverse transcription-quantitative PCR (RT-qPCR). The method was used to concentrate rotaviruses from different tap water and environmental water samples collected in Slovenia within years 2007 and 2009. The performance of virus concentration using monolithic supports was improved in comparison to the one of tangential ultrafiltration upon application of both methods on a range of environmental samples. Several samples were successfully concentrated on-site after successful adaptation of the method to field requirements. In such on-site format, the combination of concentration using CIM and detection using RT-qPCR detected as low as 30 rotavirus particles/ml, spiked in an environmental water sample.

Purchase full article

Full view

L. Urbas, B. Košir, M. Peterka, B. Pihlar, A. Štrancar, M. Barut

Journal of Chromatography A, 1218 (2011) 2432-2437

Monoliths are chromatographic stationary phases, which were specially designed for efficient purification of large biomolecules, like proteins, viruses and DNA. In this work, the small scale monolithic butyl (C4) and styrene-divinyl benzene (SDVB) columns were applied for reversed phase analyses of various degraded influenza viruses. The binding of the HA1 subunit of haemagglutinin to the monolithic columns was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and the Western blot. The working linear range was determined as 1.60 × 1010 viral particles/mL to at least 1.64 × 1011 viral particles/mL, the limit of detection was found to be 2.56 × 109 virus particles/mL and the limit of quantification was 5.12 × 109 virus particles/mL. The analytical HPLC method developed with the H1N1 virus was also applicable for the analytics of the HA1 subunit of H3N2 influenza virus and the influenza B virus.

Purchase full article

Full view

F. Smrekar, M. Ciringer, A. Štrancar, A. Podgornik

Journal of Chromatography A, 1218 (2011) 2438-2444

Binding of three different bacteriophages (phages), namely T7, lambda and M13 on methacrylate monoliths was investigated. Phage M13 exhibited the highest dynamic binding capacity of 4.5 × 1013 pfu/mL while T7 and lambda showed capacity of 1 × 1013 pfu/mL, all corresponding to values of around 1 mg/mL. Interestingly, capacity for lambda phage was increased 5-fold by increasing NaCl concentration in a loaded sample from 0 to 0.2 M while there was a constant capacity decrease for T7 and M13 phages. Under optimal conditions, recovery for all three phages approached 100%. Measurement of a pressure drop increase during loading enabled estimation of adsorbed phage layer thickness. At a maximal capacity it was calculated to be around 50 nm for T7 phage and 60 nm for lambda phage matching closely capside size thus indicating monolayer adsorption while 80 nm layer thickness was estimated for M13 phage showing its orientation along the pore.

Purchase full article

Full view

P. Kramberger, R. C. Honour, R. E. Herman, F. Smrekar, M. Peterka

Journal of Virological Methods 166 (2010) 60–64166 (2010) 60–64

Bacteriophages (phages) are known to be useful in many fields from medicine to agriculture, and for a broad range of applications, including phage therapy and phage display. For some applications, especially in medicine, high purity and viability of phages are required. Methacrylate monoliths (Convective Interaction Media [CIM] monolithic columns), designed for purification of bionanoparticles, were applied for the purification of Staphylococcus aureus phages VDX-10 from bacterial lysate. With a single step purification method, more than 99% of host cell DNA and more than 90% of proteins were removed, with 60% recovery of viable phages. Comparable results were obtained when the purification method was scaled-up from a CIM monolithic disk to a larger CIM monolithic column. Additionally, the dynamic binding capacity of a methacrylate monolith column for S. aureus phages VDX-10 was determined.

Purchase full article

Full view

M. Peterka, P. Kramberger, A. Štrancar

Wang, Perry G. (ur.). Monolithic chromatography and its modern applications. St Albans: ILM publications, 2010, pg. 489-508

Downstream processing (DSP) for purification can become a significant bottleneck in the production of novel biotherapeutics, such as viral vectors and vaccines (viral or DNA). Although different techniques can be used for the purification of large molecules and particles, liquid chromatography is the preferred method as it achieves the purity required by regulatory agencies. Despite the popularity of conventional chromatographic media, the diffusional mass transfer of large molecules and relatively small pore size remain limiting factors for the efficient separation of large biomolecules and particles.

Purchase book

Full view

A. Čevdek, M. Franko

Analytical and Bioanalytical Chemistry 398 (2010), 555-562

This work presents a comparison of convective interaction media (CIM) and controlled pore glass (CPG) as solid supports for immunoglobulin antibodies used in bioanalytical detection of allergens in foodstuffs. A flow-injection manifold with highly sensitive thermal lens spectrometric detection was used for this purpose. Using beta-lactoglobulin, a milk allergen, as a model analyte, CIM disc supports had a higher linear range (0.2–3.5 μg L-1), better reproducibility (intra-day RSD = 1%, inter-day RSD = 10%), lower consumption of reagents, and better immunocolumn stability (1 month, over 240 injections of substrate), while providing comparable LODs (0.1 μg L-1). Application of CIM discs as solid supports in immunocolumns for allergen detection enables fast and sensitive screening of allergens in foodstuffs with sample throughput of up to eight samples per hour.

Purchase full article

Full view

2009

P. Brne, Y.-P. Lim, A. Podgornik, M. Barut, B. Pihlar, A. Štrancar

Journal of Chromatography A, 1216 (2009) 2658-2663

Convective interaction media (CIM; Sartorius BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

Purchase full article

Full view

J. Krenkova, A. Gargano, N. A. Lacher, J. M. Schneiderheinze, F. Švec

Journal of Chromatography A, 1216 (2009) 6824–6830

Poly(glycidyl methacrylate-co-ethylene methacrylate) monoliths have been prepared in 100 μm i.d. capillaries and their epoxy groups hydrolyzed to obtain poly(2,3-dihydroxypropyl methacrylate-co-ethylene methacrylate) matrix. These polymers were then photografted in a single step with 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylic acid to afford stationary phases for a strong and a weak cation exchange chromatography, respectively. Alternatively, poly(ethylene glycol) methacrylate was used for grafting in the first step in order to enhance hydrophilicity of the support followed by photografting with 2-acrylamido-2-methyl-1-propanesulfonic acid or acrylic acid in the second step. These new columns were used for the separation of proteins and peptides. A mixture of ovalbumin, α-chymotrypsinogen, cytochrome c, ribonuclease A and lysozyme was used to assess the chromatographic performance for large molecules while a cytochrome c digest served as a model mixture of peptides. All tested columns featured excellent mass transfer as demonstrated with very steep breakthrough curves. The highest binding capacities were found for columns prepared using the two step functionalization. Columns with sulfonic acid functionalities adsorbed up to 21.5 mg/mL lysozyme while the capacity of the weak cation exchange column functionalized with acrylic acid was 29.2 mg/mL.

Purchase full article

Full view