2019

The increasing demand for messenger RNA (mRNA) as therapeutic product requires larger production scales, and in turn more efficient extraction techniques. Messenger RNA can be produced by in vitro transcription reactions (IVT) or isolated from eukaryotic cells. One of the most convenient techniques for its extraction is the use of oligo deoxythymine (dT) coupled to a solid support. Oligo dT hybridises to the poly-adenylated tail which is present on most eukaryotic mRNAs, or synthetised onto the molecule during IVT. Contaminant impurities, such as proteins, unreacted nucleotides, plasmid DNA, CAP analogues, partial transcripts, dsRNA side products and enzymes lack the poly-A moiety and are not retained on the solid support.
Chromatography using a solid phase consisting of large channels, such as monoliths, allows high flow rates and low shear forces. This can have a positive impact on recovery and productivity in purification of biologics. In addition, chromatography offers a closed system to minimise the risk of cross-contamination or exposure to RNase degradation, and an easily scalable platform.
CIMmultus™ Oligo dT is a chromatography column with Oligo dT ligands covalently bound on its surface. The sample containing poly-adenylated mRNA is loaded onto the column in a high salt concentration buffer. Salt ions screen the electrostatic repulsion between the negatively charged backbones and allow interaction between the Oligo dT and poly-adenylated tail of mRNA. Before product elution, a wash step at reduced salt concentration removes unspecifically bound contaminants. Elution of messenger RNA occurs under mild conditions in low conductivity buffer at neutral pH. In the absence of salt, electrostatic repulsion between the negatively charged backbones of Oligo dT and poly-adenine destabilises the T–A pairs and releases mRNA from the column.

Attachments

Full view

2008

A mixture of 8mer, 10mer, 12mer, 14mer, 15mer and 16mer Oligodeoxynucleotides was loaded on CIM® DEAE Disk and eluted in linear gradient mode at a flow rate of 6 mL/min (17 CV/min). Separation of all nucleotides could be accomplished within 60 seconds.

Attachments

Full view