2019

A purification of synthetic oligonucleotides by using CIM™ monolith was evaluated. In this case study, the CIM™ anion exchange column had the capability to resolve oligonucleotides with small difference in comparative chain length.

A crude reaction mixture of synthetic oligonucleotide was loaded onto the CIM™ anion exchange column. Sample elution was achieved by salt concentration gradient. In comparison with conventional media, CIM™ monolith indicated higher resolution for major impurities.

Advantages of the characteristic properties of the CIM™ monolith were evaluated based on the high throughput purification of oligonucleotides under the identified gradient separation conditions. Over 99 % HPLC purity for the target oligoDNA was achieved by one-step purification from the crude reaction mixture.

Attachments

Full view

Pre-activated CIMmic™ monolithic columns are cost efficient tools for screening of immobilisation conditions and small scale proof-of-concept testing of custom affinity columns and enzymatic reactors. Each column is assembled from a dedicated housing and discs containing a chromatography medium. With a bed volume of 100 μL, sample requirements are minimal, while inserting multiple discs in the housing adapts the column volume to application requirements. Different surface modifications of the discs enable immobilisation of a wide variety of ligands.

The increasing demand for messenger RNA (mRNA) as a therapeutic product requires larger production scales, and in turn more efficient extraction techniques. One of the most convenient techniques for its extraction is the use of oligo deoxythymidine (dT) coupled to a solid support [1]. Oligo dT hybridises to the poly-adenylated tail which is present on most eukaryotic mRNAs, or synthetised onto the molecule during IVT, while other contaminant impurities (proteins, unreacted nucleotides, plasmid DNA, CAP analogues, partial transcripts, dsRNA side products and enzymes) lack the poly-A moiety and do not adhere to the solid support.

Attachments

Full view

The increasing demand for messenger RNA (mRNA) as therapeutic product requires larger production scales, and in turn more efficient extraction techniques. Messenger RNA can be produced by in vitro transcription reactions (IVT) or isolated from eukaryotic cells. One of the most convenient techniques for its extraction is the use of oligo deoxythymine (dT) coupled to a solid support. Oligo dT hybridises to the poly-adenylated tail which is present on most eukaryotic mRNAs, or synthetised onto the molecule during IVT. Contaminant impurities, such as proteins, unreacted nucleotides, plasmid DNA, CAP analogues, partial transcripts, dsRNA side products and enzymes lack the poly-A moiety and are not retained on the solid support.
Chromatography using a solid phase consisting of large channels, such as monoliths, allows high flow rates and low shear forces. This can have a positive impact on recovery and productivity in purification of biologics. In addition, chromatography offers a closed system to minimise the risk of cross-contamination or exposure to RNase degradation, and an easily scalable platform.
CIMmultus™ Oligo dT is a chromatography column with Oligo dT ligands covalently bound on its surface. The sample containing poly-adenylated mRNA is loaded onto the column in a high salt concentration buffer. Salt ions screen the electrostatic repulsion between the negatively charged backbones and allow interaction between the Oligo dT and poly-adenylated tail of mRNA. Before product elution, a wash step at reduced salt concentration removes unspecifically bound contaminants. Elution of messenger RNA occurs under mild conditions in low conductivity buffer at neutral pH. In the absence of salt, electrostatic repulsion between the negatively charged backbones of Oligo dT and poly-adenine destabilises the T–A pairs and releases mRNA from the column.

Attachments

Full view

2018

The application describes separation of Ni species by assembling four weak CIM DEAE anion-exchange disks into a monolithic column. The concentrations of the Ni species eluted from the column were quantified by post-column isotope dilution inductively coupled plasma mass spectrometry (ID)-ICP-MS. The Ni binding ligands eluted under the chromatographic peaks were identified off-line by tandem electro spray mass spectrometry (ESI-MS-MS), scanning for negative ions.
The mild chromatographic conditions of the CIM DEAE disks preserved chemical species and enabled separation of negatively charged Ni complexes.4 NH4NO3 was chosen as eluent since it enabled separation of Ni species and is compatible with ICP-MS and mass spectrometry detectors.

Attachments

Full view

2008

A mixture of 8mer, 10mer, 12mer, 14mer, 15mer and 16mer Oligodeoxynucleotides was loaded on CIM® DEAE Disk and eluted in linear gradient mode at a flow rate of 6 mL/min (17 CV/min). Separation of all nucleotides could be accomplished within 60 seconds.

Attachments

Full view