On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2021

Michael Winkler, Mikhail Goldfarb, Shaojie Weng, Jeff Smith, Susan Wexelblat, John Li, Alejandro Becerra, Sandra Bezemer, Kevin Sleijpen, Aleš Štrancar, Sara Primec, Romina Zabar, April Schubert, Akunna Iheanacho, and David Cetlin

BioProcess International, April 2021

Abstract

Over the past decade, adenoassociated virus (AAV) vectors have become established as leading gene-delivery vehicles. In 2017, the pipeline for gene therapies included 351 drugs in clinical trials and 316 in preclinical development. As those candidates advance, significant efforts are being made in process development and manufacturing for viral vectors, with the overall goal of reducing process impurities while maintaining the highest possible process yield.

Sartorius BIA Separations has developed and commercialized CIMmultus QA monoliths, which have been cited in several AAV downstream processes for their ability to separate empty and full virus particles effectively. Monolithic supports represent a unique type of stationary phase for liquid chromatography, bioconversion, and solid-phase synthesis. Aside from increased processing speed, monolithic flow-through pores (channels) also provide easy access for large molecules, which supports both purification and depletion of nanoparticles such as plasmid DNA (pDNA) molecules and AAV particles.

Read full article

Full view

Thanaporn Liangsupree, Evgen Multia, Marja-Liisa Riekkola

Journal of Chromatography A, Volume 1636, 2021

Abstract

Extracellular vesicles (EVs) are heterogenous membrane-bound vesicles released from various origins. EVs play a crucial role in cellular communication and mediate several physiological and pathological processes, highlighting their potential therapeutic and diagnostic applications. Due to the rapid increase in interests and needs to elucidate EV properties and functions, numerous isolation and separation approaches for EVs have been developed to overcome limitations of conventional techniques, such as ultracentrifugation. This review focuses on recently emerging and modern EV isolation and separation tech- niques, including size-, charge-, and affinity-based techniques while excluding ultracentrifugation and precipitation-based techniques due to their multiple limitations. The advantages and drawbacks of each technique are discussed together with insights into their applications. Emerging approaches all share sim- ilar features in terms of being time-effective, easy-to-operate, and capable of providing EVs with suitable and desirable purity and integrity for applications of interest. Combination and hyphenation of techniques have been used for EV isolation and separation to yield EVs with the best quality. The most recent de- velopment using an automated on-line system including selective affinity-based trapping unit and asym- metrical flow field flow fractionation allows reliable isolation and fractionation of EV subpopulations from human plasma.

Attachments

Full view

Sebastijan Peljhan, Maja Štokelj, Sara Drmota Prebil, Pete Gagnon and Aleš Štrancar

Cell & Gene Therapy Insights, March 2021

Abstract:

Ultracentrifugation (UC) is a well-known technique for fractionating adeno-associated virus (AAV) capsids according to their density, which is mainly a function of their encapsidated DNA mass. Empty capsids represent the lowest density subpopulation. Full capsids represent the highest density subpopulation, sometimes accompanied by partially full capsids of intermediate density. Fractions can be collected after sedimentation for analysis but the practice is laborious and discourages application of multiple monitoring techniques that might provide deeper insights into sample composition. Anion exchange chromatography (AEC) also achieves fractionation of empty and full capsids for many AAV serotypes. The degree of separation varies among serotypes and does not correlate strictly with UC. This is not surprising since separation by AEC is highly influenced by capsid surface charge, which is independent of the amount of DNA packaged within the capsids. Chromatography methods however present a significant analytical advantage in the ease of monitoring the column effluent, including with multiple detectors. UV absorbance at 260 nm and 280 nm permits estimation of empty and full capsid proportions in any given peak. Intrinsic fluorescence enables estimation of relative areas of empty capsid peaks and full capsid peaks. Light scattering does the same and permits the further determination of capsid size and mass. In this report, we merge UC with an HPLC monitoring array to simultaneously analyze dual wavelength UV, intrinsic fluorescence, and light scattering through cesium chloride density gradient strata. Limitations of each monitoring method are discussed. UC results are compared with chromatography profiles to highlight distinction between separation methods. Practical application of results for final product characterization is considered, along with potential to support development of better purification processes.

Attachments

Full view

Pete Gagnon, Maja Leskovec, Blaz Goricar, and Aleš Štrancar

BPI, December 17, 2020

Abstract:

With its first licensed therapeutic now marketed worldwide, adeno-associated virus (AAV) has become a preferred vector for gene therapy. However, unlocking its full potential still poses challenges, many of which are associated with purification. The first involves the transition from upstream to downstream processes. AAV-bearing lysates are laden with debris that foul filtration media and limit or prevent concentration. Another challenge involves reduction of soluble host-cell DNA, which is complicated by its strong association with nucleoproteins. A third involves elimination of empty capsids. Currently, ultracentrifugation meets that need, but scale-up issues make chromatographic alternatives attractive. A fourth challenge involves the need for rapid, accurate, and revealing analytical results to guide process development, support validation, document control, and enable reproducibility of manufacturing processes. The following article shares experimental data showing how those challenges can be addressed to advance the evolution of gene therapy with AAV.

Attachments

Full view

Pete Gagnon, Blaz Goricar, Nina Mencin, Timotej Zvanut, Sebastijan Peljhan, Maja Lescovec and Ales Strancar

Pharmaceutics. 2021 Jan 17;13(1):113

Abstract:

HPLC is established as a fast convenient analytical technology for characterizing the content of empty and full capsids in purified samples containing adeno-associated virus (AAV). UV-based monitoring unfortunately over-estimates the proportion of full capsids and offers little value for characterizing unpurified samples. The present study combines dual-wavelength UV monitoring with intrinsic fluorescence, extrinsic fluorescence, and light-scattering to extend the utility of HPLC for supporting development of therapeutic AAV-based drugs. Applications with anion exchange (AEC), cation exchange (CEC), and size exclusion chromatography (SEC) are presented. Intrinsic fluorescence increases sensitivity of AAV detection over UV and enables more objective estimation of empty and full capsid ratios by comparison of their respective peak areas. Light scattering enables identification of AAV capsids in complex samples, plus semiquantitative estimation of empty and full capsid ratios from relative peak areas of empty and full capsids. Extrinsic Picogreen fluorescence enables semiquantitative tracking of DNA with all HPLC methods at all stages of purification. It does not detect encapsidated DNA but reveals DNA associated principally with the exteriors of empty capsids. It also enables monitoring of host DNA contamination across chromatograms. These enhancements support many opportunities to improve characterization of raw materials and process intermediates, to accelerate process development, provide rapid in-process monitoring, and support process validation.

Download full article

Full view

2020

by Simon Staubach, Pete Gagnon, Katja Vrabec, Tjaša Lojpur, Sebastijan Peljhan, Bernd Giebel and Aleš Štrancar

BioProcess International, 2020

Abstract:

The traditional classification of extracellular vesicles (EVs) includes three types: exosomes, microvesicles, and apoptotic vesicles. Each type arises from a distinct origin and exhibits distinct characteristics. The problem is that their size ranges overlap and that the major surface proteins presented by exosomes also are present on the surfaces of microvesicles and apoptotic bodies. This makes it a challenge for process developers to identify the vesicle fraction that best serves a particular exosome therapy. Anion-exchange chromatography (AEC) can fractionate EVs into populations of different composition. This article highlights the complementarity of two analytical methods for characterizing distinctions among EV populations separated by AEC: imaging flow cytometry (IFCM) and size-exclusion chromatography.

Download full eBook

Full view

by Maribel Rios, Aleš Štrancar, J. Michael Hatfield and Pete Gagnon

BioProcess International, 2020

Abstract:

Adenoassociated viral (AAV) vectors have become synonymous with gene therapy delivery. However, because they are produced in such small quantities and because their upstream processes carry comparatively large amounts of host-cell DNA and other impurities, AAV purification can be challenging. Several researchers have applied different chromatographic strategies, but no universal method has been adopted in the biopharmaceutical industry.

This eBook features a discussion among several industry experts that explores challenges specific to AAV purification, shedding light on whether current strategies and separation technologies are up to the task. The conversation traverses issues relating to material handling at the upstream–downstream interface, removal of host-cell DNA, chromatographic separation of empty and full capsids, and a lack of fast and robust in-process analytics for downstream processes. Participants also explore whether the rise of AAV-based treatments will require downstream scientists to shift away from the antibody-centered conceptions of chromatography that have grown alongside the biotherapeutics industry.

Dowload full eBook

Full view

E. Multia, T. Liangsupree, M. Jussila, J. Ruiz-Jimenez, M. Kemell and M. Riekkola

Analytical Chemistry, 2020

Abstract:

An automated on-line isolation and fractionation system including controlling software was developed for selected nanosized biomacromolecules from human plasma by on-line coupled immunoaffinity chromatography asymmetric flow field-flow fractionation (IAC-AsFlFFF). The on-line system was versatile, only different monoclonal antibodies, anti-apolipoprotein B-100, anti-CD9, or anti-CD61, were immobilized on monolithic disk columns for isolation of lipoproteins and extracellular vesicles (EVs). The platelet-derived CD61-positive EVs and CD9-positive EVs, isolated by IAC, were further fractionated by AsFlFFF to their sizebased subpopulations (e.g., exomeres and exosomes) for further analysis. Field-emission scanning electron microscopy elucidated the morphology of the subpopulations, and 20 free amino acids and glucose in EV subpopulations were identified and quantified in the ng/mL range using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The study revealed that there were significant differences between EV origin and size-based subpopulations. The on-line coupled IAC-AsFlFFF system was successfully programmed for reliable execution of 10 sequential isolation and fractionation cycles (37−80 min per cycle) with minimal operator involvement, minimal sample losses, and contamination. The relative standard deviations (RSD) between the cycles for human plasma samples were 0.84−6.6%.

Attachments

Full view

U. Černigoj, A. Štrancar

DNA Vaccines. Methods in Molecular Biology, vol 2197, pp 167-192

Abstract

Purification of high-quality plasmid DNA in large quantities is a crucial step in its production for therapeutic use and is usually conducted by different chromatographic techniques. Large-scale preparations require the optimization of yield and homogeneity, while maximizing removal of contaminants and preserving molecular integrity. The advantages of Convective Interaction Media® (CIM®) monolith stationary phases, including low backpressure, fast separation of macromolecules, and flow-rate-independent resolution qualified them to be used effectively in separation of plasmid DNA on laboratory as well as on large scale. A development and scale-up of plasmid DNA downstream process based on chromatographic monoliths is described and discussed below. Special emphasis is put on the introduction of process analytical technology principles and tools for optimization and control of a downstream process.

Buy protocol

Full view

M. Morani, T.Duc Mai, Z. Krupova, P. Defrenaix, E. Multia, M. Riekkola, M. Taverna

Analytica Chimica Acta 1128 (2020) 45-51

Abstract

This work reports on the development of the first capillary electrophoresis methodology for the elucidation of extracellular vesicles’ (EVs) electrokinetic distributions. The approach is based on capillary electrophoresis coupled with laser-induced fluorescent (LIF) detection for the identification and quantification of EVs after their isolation. Sensitive detection of these nanometric entities was possible thanks to an ‘inorganic-species-free’ background electrolyte. This electrolyte was made up of weakly charged molecules at very high concentrations to stabilize EVs, and an intra-membrane labelling approach was used to prevent EV morphology modification. The limit of detection for EVs achieved using the developed CE-LIF method method reached 8 × 10⁹ EVs/mL, whereas the calibration curve was acquired from 1.22 × 10¹⁰ to 1.20 × 10¹¹ EVs/mL. The CE-LIF approach was applied to provide the electrokinetic distributions of various EVs of animal and human origins, and visualize different EV subpopulations from our recently developed high-yield EV isolation method.

Purchase full article

Full view

Pete Gagnon, Katja Vrabec, Tjaša Lojpur, and Aleš Štrancar

BioProcess International, 18 (4) April 2020

Abstract

Exosomes are a subject of rapidly growing therapeutic interest in the biopharmaceutical industry for two principal reasons. The first reason is that they are the primary communicators of instructions from source cells to target cells. Exosome surface features define their destination. They recognize complementary features on target cells, dock with them, and deliver their programmed instructions in the form of microRNA. The second reason is that exosomes are immunologically silent. As normal human cell products, and by contrast with gene therapy vectors such as virus particles, exosomes bypass the issue of triggering an immune response that might interfere with therapy.

Source cells include stem cells, which is why exosomes are of particular interest in the field of regenerative medicine. Recent research documenting the ability of exosomes to reverse the effects of severe strokes highlights their potential. It also underlines the need for scalable purification technology to advance these products through clinical trials and on to licensed manufacture. A platform approach was a major factor in the initial and continuing success of monoclonal antibodies. Exosomes likewise represent an extended family of individual products with similar properties. It stands to reason that a platform approach will prove equally valuable for exosomes. In this article we describe initial efforts toward that goal.

Contact us and request full article

Full view

2019

Wang Chunlei, Mulagapati Sri Hari Raju, Chen Zhongying, Du Jing, Zhao Xiaohui, Xi Guoling, Chen Liyan, Linke Thomas, Gao Cuihua, Schmelzer Albert, Liu Dengfeng

Molecular Therapy  Methods & Clinical Development, Volume 15, September 26 2019, Pages 257-263

Abstract

Adeno-associated virus (AAV) vectors are clinically proven gene delivery vehicles that are attracting an increasing amount of attention. Non-genome-containing empty AAV capsids are by-products during AAV production that have been reported to potentially impact AAV product safety and efficacy. Therefore, the presence and amount of empty AAV capsids need to be characterized during process development. Multiple methods have been reported to characterize empty AAV capsid levels, including transmission electron microscopy (TEM), analytical ultracentrifugation (AUC), charge detection mass spectrometry (CDMS), UV spectrophotometry, and measuring capsid and genome copies by ELISA and qPCR. However, these methods may lack adequate accuracy and precision or be challenging to transfer to a quality control (QC) lab due to the difficulty of implementation. In this study, we used AAV serotype 6.2 (AAV6.2) as an example to show the development of a QC-friendly anion exchange chromatography (AEX) assay for the determination of empty and full capsid percentages. The reported assay requires several microliters of material with a minimum titer of 5 × 1011 vg/mL, and it can detect the presence of as low as 2.9% empty capsids in AAV6.2 samples. Additionally, the method is easy to deploy, can be automated, and has been successfully implemented to support testing of various in-process and release samples.

Read full article

Keywords: AAV, AAV6.2, Chromatography, Anion exchange chromatography (AEC), Empty capsids, AUC, High-throughput

Full view

Sofiya Fedosyuk, Thomas Merritt, Marco Polo Peralta-Alvarez, Susan J. Morris, Ada Lam, Nicolas Laroudie, Anilkumar Kangokar, Daniel Wright, George M. Warimwe, Phillip Angell-Manning, Adam J. Ritchie, Sarah C. Gilbert, Alex Xenopoulos, Anissa Boumlic, Alexander D. Douglas

Vaccine (2019).
Published online 30 April 2019.

A variety of Good Manufacturing Practice (GMP) compliant processes have been reported for production of non-replicating  adenovirus vectors, but important challenges remain. There is a need for rapid production platforms for small GMP batches of non-replicating adenovirus vectors for early-phase vaccine trials, particularly in preparation for response to emerging pathogen outbreaks. Such platforms must be robust to variation in the transgene, and ideally also capable of producing adenoviruses of more than one serotype. It is also highly desirable for such processes to be readily implemented in new facilities using  commercially available single-use materials, avoiding the need for development of bespoke tools or cleaning validation, and for them to be readily scalable for later-stage studies.
Here we report the development of such a process, using single-use stirred-tank bioreactors, a transgene-repressing HEK293 cell – promoter combination, and fully single-use filtration and ion exchange components. We demonstrate applicability of the process to candidate vaccines against rabies, malaria and Rift Valley fever, each based on a different adenovirus serotype.

Keywords: Simian adenovirus, GMP, Clinical trials, Single-use, Biomanufacturing, Bioreactor, Purification

Read full article

Full view

Evgen Multia, Crystal Jing Ying Tear, Mari Palviainen, Pia Siljander, Marja-Liisa Riekkola

Analytica Chimica Acta (2019).
Published online 2019 Sep 11.

A new, fast and selective immunoaffinity chromatographic method including a methacrylate-based convective interaction media (CIM®) disk monolithic column, immobilized with anti-human CD61 antibody, was developed for the isolation of CD61-containing platelet-derived extracellular vesicles (EVs) from plasma. The isolated EVs were detected and size characterized by asymmetrical flow field-flow fractionation (AsFlFFF) with multi-angle light-scattering (MALS) and dynamic light-scattering (DLS) detection, and further confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The isolation procedure took only 19 min and the time can be even further decreased by increasing the flow rate. The same immunoaffinity chromatographic procedure, following AsFlFFF allowed also the isolation and characterization of platelet-derived EVs from plasma in under 60 min. Since it is possible to regenerate the anti-CD61 disk for multiple uses, the methodology developed in this study provides a viable substitution and addition to the conventional EV isolation procedures.

Keywords: Immunoaffinity chromatography, Isolation, Monolithic disk column, Extracellular vesicles, Platelet-derived vesicles, CD61

Read full article

Full view

Dr. Xiaotong Fu, Dr. Wei-Chiang  Chen, C. Argento, R. Dickerson, P. Clarner, V. Bhatt, G. Bou-Assaf, Dr. M. Bakhshayeshi, Dr. Xiaohui Lu, Dr. S. Bergelson, Dr. J. Pieracci

Human Gene Therapy (2019)

Recombinant adeno-associated virus (rAAV)-mediated gene therapy is a fast-evolving field in the biotechnology industry. One of the major challenges in developing a purification process for AAV gene therapy is establishing an effective yet scalable method to remove empty capsids, or viral vectors lacking the therapeutic gene, from full capsids—viral product containing the therapeutic sequence. Several analytical methods that can quantify the empty-to-full capsid ratio have been reported in the literature. However, as samples can vary widely in viral titer, buffer matrix, and the relative level of empty capsids, understanding the specifications and limitations of different analytical methods is critical to providing appropriate support to facilitate process development. In this study, we developed a novel anion-exchange high-performance liquid chromatography (AEX-HPLC) assay to determine the empty-to-full capsid ratio of rAAV samples. The newly developed method demonstrated good comparability to both the transmission electron microscopy (TEM) and analytical ultracentrifugation (AUC) methods used in empty-to-full capsid ratio quantification, yet providing much higher assay throughput and reducing the minimum sample concentration requirement to 2.7E11 viral genomes (vg)/ml.

Purchase full article

Full view

K. Trabelsi, M. Ben Zakour, H. Kallel

Vaccine (2019)

Rabies is a viral zoonosis caused by negative-stranded RNA viruses of the Lyssavirus genus. It can affect all mammals including humans. Dogs are the main source of human rabies deaths, contributing up to 99% of all rabies transmissions to humans. Vaccination against rabies is still the sole efficient way to fight against the disease.
Cell culture vaccines are recommended by World Health Organization (WHO) for pre and post exposure prophylaxis; among them Vero cell rabies vaccines which are used worldwide. In this work we studied the purification of inactivated rabies virus produced in Vero cells grown in animal component free conditions, using different methods. Cells were grown in VP-SFM medium in stirred bioreactor, then infected at an MOI of 0.05 with the LP2061 rabies virus strain. Collected harvests were purified by zonal centrifugation, and by chromatography supports, namely the Capto Core 700 and the monolithic CIM-QA column. Generated data were compared in terms of residual DNA level, host cell proteins (HCP) level and the overall recovery yield.
 

Purchase full article

Full view

This discussion introduces new analytical approaches that enable in-line chromatographic detection of exosomes. One approach can discriminate extracellular vesicles from nonvesicle contaminants, and one potentially can discriminate exosomes from other vesicles. Examples illustrate how they enable development of more effective and better documented purification methods. The special qualifications of monolithic chromatography media for exosome purification are discussed. New process tools designed to accommodate some of the special challenges of exosome purification are introduced.

Feel free to download the eBook by clicking on the link to attachment below.

Attachments

Full view

2018

M. Tajnik Sbaizero, M. Wolschek, M. Reiter, T. Muster, Pete Gagnon and Aleš Štrancar

BioProcess International, 15 October 2018

Influenza is a global respiratory disease with an estimated mortality of up to a half million people per year. The majority of traditional influenza vaccines are still produced in eggs. Downstream processing typically consists of clarification by centrifugation, concentration by ultrafiltration, and purification by ultracentrifugation. Recombinant vaccines are most often purified by chromatography. Chromatographic purification of viruses already has achieved major improvements in recovery and scalability, but it also is important because it enables virus purification to keep pace with important regulatory and manufacturing trends across the field of biopharmaceuticals. One of those trends is process intensification, referring to development of processes that harmonize integration of fewer and more capable steps to achieve higher productivity and reproducibility as well as reduce manufacturing costs.
In this report we describe processes for purification of influenza A and influenza B, both lacking TFF steps, and both using a single chromatography step with a cation exchange monolith on a single-use basis. The choice of process buffers enables final formulation by simple dilution of the product pool. DNA digestion requires two hours. Capture, purification, and formulation are achieved within four hours. Host-cell DNA and host-cell protein (HCP) are reduced more than 99%, and final virus recovery is 80%.

Download full article

Full view

Laura M. Fischer, Michael W. Wolff, Udo Reichl, Vaccine 2017 July 17

The continuously increasing demand for potent and safe vaccines and the intensifying economic pressure on health care systems underlines the need for further optimization of vaccine manufacturing. Here, we focus on downstream processing of human influenza vaccines, investigating the purification of serum free cell culture-derived influenza virus (A/PR/8/34 H1N1) using continuous chromatography. Therefore, quaternary amine anion exchange monoliths (CIM QA) were characterized for their capacity to capture virus particles from animal cells cultivated in different media and their ability to separate virions from contaminating host cell proteins and DNA. The continuous chromatography was implemented as simulated moving bed chromatography (SMB) in a three zone open loop configuration with a detached high salt zone for regeneration.
SMBs exploiting 10% and 50% of the monoliths’ dynamic binding capacity, respectively, allowed the depletion of >98% of the DNA and >52% of the total protein. Based on the hemagglutination assay (HA assay), the virus yield was higher at 10% capacity use (89% vs. 45%). Both SMB  separations resulted in a ratio of total protein to hemagglutinin antigen (based on single radial diffusion assay, SRID assay) below the required levels for manufacturing of human vaccines (less than 100 mg of protein per virus strain per dose). The level of contaminating DNA was five-times lower for the 10% loading, but still exceeded the required limit for human vaccines. A subsequent Benzonase treatment step, however, reduced the DNA contamination below 10 ng per dose. Coupled to continuous cultivations for virus propagation, the establishment of integrated processes for fully continuous production of vaccines seems to be feasible.

Download full article

Full view

Miladys Limonta, Lourdes Zumalacarregui, Urska Vidic, Nika Lendero Krajnc

The main component of the Center for Genetic Engineering and Biotechnology (CIGB) candidate vaccine against Hepatitis C virus (HCV) is the pIDKE2 plasmid. The current designed downstream process for the production of pIDKE2 fulfils all regulatory requirements and renders the required quantities of pharamceutical-grade plasmid DNA (pDNA)with 95% purity. The advantages of this procedure include high plasmid purity and the elimination of undesirable additives. such as toxic organic extractants and animal-derived enzymes. However, yields and consequently the productivity of the process are low. Previous work demonstrated that the most critical step of the process is the reverse phase chromatography, where conventional porous particle resins are used. Therefore, to increase the process productivity alternative technologies such as membranes and chromatographic monoliths were tested as alternative options for this critical step. Here, a comparison between the behaviours of CIM® C4-HLD and Sartobind phenyl matrices was performed.

Attachments

Full view