On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2015

M. Zaveckas, S. Snipaitis, H. Pesliakas, J. Nainys, A. Gedvilaite
Journal of Chromatography B, 991 (2015) 21–28

Diseases associated with porcine circovirus type 2 (PCV2) infection are having a severe economic impacton swine-producing countries. The PCV2 capsid (Cap) protein expressed in eukaryotic systems self-assemble into virus-like particles (VLPs) which can serve as antigens for diagnostics or/and as vaccinecandidates. In this work, conventional adsorbents as well as a monolithic support with large pore sizeswere examined for the chromatographic purification of PCV2 Cap VLPs from clarified yeast lysate. QSepharose XL was used for the initial separation of VLPs from residual host nucleic acids and some hostcell proteins. For the further purification of PCV2 Cap VLPs, SP Sepharose XL, Heparin Sepharose CL-6Band CIMmultus SO3 monolith were tested. VLPs were not retained on SP Sepharose XL. The purity of VLPsafter chromatography on Heparin Sepharose CL-6B was only 4–7% and the recovery of VLPs was 5–7%.Using ion-exchange chromatography on the CIMmultus SO3 monolith, PCV2 Cap VLPs with the purityof about 40% were obtained. The recovery of VLPs after chromatography on the CIMmultus SO3 mono-lith was 15–18%. The self-assembly of purified PCV2 Cap protein into VLPs was confirmed by electronmicroscopy. Two-step chromatographic purification procedure of PCV2 Cap VLPs from yeast lysate wasdeveloped using Q Sepharose XL and cation-exchange CIMmultus SO3 monolith.

Download full article

Full view

A. G. Lopes

FBP-461, Food and Bioproducts Processing (2014)

As the biopharmaceutical industry matures, the trend towards increased flexibility and productivity, faster time tomarket and greater profitability are driving the replacement of traditional stainless steel equipment by single-use technology (SUT). The use of SUT in the biopharmaceutical industry can significantly impact the manufacturing process efficiency by reducing capital costs, improving plant flexibility, reducing start-up times and costs, and elim-inating both non-value added process steps and the risk of cross-contamination. In addition it significantly reduces process liquid waste, labour costs and on-site quality and validation requirements. This paper reviews the current status of the technology and the impact of SUT in the biopharmaceutical industry, with the aim of identifying the challenges and limitations that still need to be addressed for further adoption of these technologies. Even tough SUT has a multitude of systems available, its components and assemblies have little standardisation as well as alack of harmonised tests and procedures among suppliers, with an array of guidelines from a variety of sourcesand no critical limits have been established. In addition, the use of SUT has new validation requirements such as leachables and extractables, suppliers’ qualification and SUT lot-to-lot variability. The lack of expertise in these areas and the new training requirements when using SUT also need to be addressed. To date the majority of the avail-able literature regarding SUT is found in trade journals where typically suppliers are the main contributors. There is still a lack of engagement of the academic community, which contributes to very limited scientific proof from independent peer-reviewed research to support performance of SUT. This is particularly the case during operation and integrity testing of SUT, during for example on-site testing, transport and disposal. Another area where no work has been undertaken concerns conceptual approaches for facility clean-room requirement and appropriate layout design using SUT. Investment in novel technologies, research, standardisation and training is paramount for further development and implementation of SUTs across all sectors of the biopharmaceutical industry.

Purchase full article

Full view

Urh Černigoj, Urška Martinuč, Sara Cardoso, Rok Sekirnik, Nika Lendero Krajnc, Aleš Štrancar

Sample displacement chromatography (SDC) is a chromatographic technique that utilises different rela-tive binding affinities of components in a sample mixture and has been widely studied in the context ofpeptide and protein purification. Here, we report a use of SDC to separate plasmid DNA (pDNA) isoformsunder overloading conditions, where supercoiled (sc) isoform acts as a displacer of open circular (oc) orlinear isoform. Since displacement is more efficient when mass transfer between stationary and mobilechromatographic phases is not limited by diffusion, we investigated convective interaction media (CIM)monoliths as stationary phases for pDNA isoform separation. CIM monoliths with different hydrophobic-ities and thus different binding affinities for pDNA (CIM C4 HLD, CIM-histamine and CIM-pyridine) weretested under hydrophobic interaction chromatography (HIC) conditions. SD efficiency for pDNA isoformseparation was shown to be dependent on column selectivity for individual isoform, column efficiencyand on ammonium sulfate (AS) concentration in loading buffer (binding strength). SD and negative modeelution often operate in parallel, therefore negative mode elution additionally influences the efficiencyof the overall purification process. Optimisation of chromatographic conditions achieved 98% sc pDNAhomogeneity and a dynamic binding capacity of over 1 mg/mL at a relatively low concentration of AS.SDC was successfully implemented for the enrichment of sc pDNA for plasmid vectors of different sizes,and for separation of linear and and sc isoforms, independently of oc:sc isoform ratio, and flow-rate used.This study therefore identifies SDC as a promising new approach to large-scale pDNA purification, whichis compatible with continuous, multicolumn chromatography systems, and could therefore be used toincrease productivity of pDNA production in the future.

Attachments

Full view

2014

M. M. Segura, M. Puig, J. Piedra, S. Miravet

Adenovirus: Methods and protocols, Methods in Molecular Biology, vol. 1089

Adenovirus vectors are efficient gene delivery tools. A major caveat with vectors derived from common human adenovirus serotypes is that most adults are likely to have been exposed to the wild-type virus and exhibit active immunity against the vectors. This preexisting immunity limits their clinical success. Strategies to circumvent this problem include the use of nonhuman adenovirus vectors. Vectors derived from canine adenovirus type 2 (CAV-2) are among the best-studied representatives. CAV-2 vectors are particularly attractive for the treatment of neurodegenerative disorders. In addition, CAV-2 vectors have shown great promise as oncolytic agents in virotherapy approaches and as vectors for recombinant vaccines. The rising interest in CAV-2 vectors calls for the development of scalable GMP compliant production and purification strategies. A detailed protocol describing a complete scalable downstream processing strategy for CAV-2 vectors is reported here. Clarification of CAV-2 particles is achieved by microfiltration. CAV-2 particles are subsequently concentrated and partially purified by ultrafiltration–diafiltration. A Benzonase® digestion step is carried out between ultrafiltration and diafiltration operations to eliminate contaminating nucleic acids. Chromatography purification is accomplished in two consecutive steps. CAV-2 particles are first captured and concentrated on a propyl hydrophobic interaction chromatography column followed by a polishing step using DEAE anion exchange monoliths. Using this protocol, high-quality CAV-2 vector preparations containing low levels of contamination with empty viral capsids and other inactive vector forms are typically obtained. The complete process yield was estimated to be 38–45 %.

Purchase full article

Full view

M.-C. Claudepierrea, et al.

Journal of Virology, February 2014

To identify novel stimulators of the innate immune system, we constructed a panel of eight HEK293-cells lines, double-positive for human Toll-like receptors (TLR) and a NF-κB-inducible reporter gene. Screening a large variety of compounds and cellular extracts detected a TLR3 activating compound in a microsomal yeast extract. Fractionation of this extract identified a RNA molecule of 4.6 kb, named Nucleic Acid Band 2 (NAB2) that was sufficient to confer the activation of TLR3. Digests with single- and double-strand-specific RNases showed the double-strand nature of this RNA, and its sequence was found to be identical to the genome of the dsRNA L-BC virus of Saccharomyces cerevisiae. A large scale production and purification process of this RNA was established based on chemical cell lysis and dsRNA-specific chromatography. NAB2 complexed with the cationic lipid Lipofectin, but neither NAB2 nor Lipofectin alone, induced the secretion of IL-12(p70), IFNα, IP-10, Mip-1β and IL-6 in human monocyte-derived dendritic cells. While NAB2 activated TLR3, Lipofectin-stabilized NAB2 signaled also via the cytoplasmic sensor for RNA recognition MDA-5. Significant increase of RMA-MUC1 tumor rejection and survival was observed in C57BL/6 mice after prophylactic vaccination with MUC1-encoding MVA and NAB2+Lipofectin. This combination of immunotherapeutics strongly increased the percentage of infiltrating Natural Killer (NK) cells and plasmacytoid dendritic cells (pDCs) at the injection sites, cell types which can modulate innate and adaptive immune responses.

Purchase full article

Full view

M. Banjac, E. Roethl, F. Gelhart, P. Kramberger, B. Lah Jarc, M. Jarc, A. Štrancar, T. Muster, M. Peterka
Vaccine 2014

We explored the possibilities for purification of various ΔNS1 live, replication deficient influenza viruses on ion exchange methacrylate monoliths. Influenza A ΔNS1-H1N1, ΔNS1-H3N2, ΔNS1-H5N1 and ΔNS1-influenza B viruses were propagated in Vero cells and concentrated by tangential flow filtration. All four virus strains adsorbed well to CIM QA and CIM DEAE anion exchangers, with CIM QA producing higher recoveries than CIM DEAE. ΔNS1-influenza A viruses adsorbed well also to CIM SO3 cation exchanger at the same pH, while ΔNS1-influenza B virus adsorption to CIM SO3 was not complete. Dynamic binding capacity (DBC) for CIM QA, DEAE and SO3 methacrylate monoliths for influenza A ΔNS1-H1N1 virus were 1.9E+10 TCID50/ml, 1.0E+10 TCID50/ml and 8.9E+08 TCID50/ml, respectively. Purification of ΔNS1 viruses on CIM QA was scaled up and reproducibility was confirmed. Yields of infectious virus on CIM QA were between 70.8±32.3% and 87±30.8%. Total protein removal varied from 93.3±0.4% to 98.6±0.2% and host cell DNA removal efficiency was ranging from 76.4% to 99.9% and strongly depended on pretreatment with deoxyribonuclease.

Purchase full article

Full view

2013

A. A. Shukla, U. Gottschalk

Trends in Biotechnology (2012) 1-8

The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future.

Purchase full article

Full view

M. Li, Y. X. Qiu

Vaccine 31 (2013) 1264-1267

An effective downstream bio-processing of vaccine products requires complete chemical knowledge of the contaminants that may arise from a given vector expression system. Whether the vaccine is made from the traditional egg-based or the new cell-cultured process, it is the expression system that determines the types of impurities that need to be identified and removed from the vaccine product.

There are mechanical and chemical factors that can either reduce the yield or render a vaccine product to be irreversibly inactive. The choice of equipment and solvents is therefore important in minimizing product loss, and for maintaining an efficient and optimized manufacturing process.

The frequent out-of-specification, irreproducible data and inefficiency in the manufacturing of biologics were the basis for FDA to propose the “cGMP for the 21st Century” initiative in the year of 2000. Effective 2004, the concept of quality by design (QbD) has been imposed in the manufacturing of biologics. To facilitate the implementation of QbD FDA has encouraged the use of process analytical technology (PAT). Further, FDA believes that an optimized manufacturing scheme requires one to identify and to control the variables that can negatively affect the yield and quality of the desired product, and PAT can reveal wrongful data and alert the operator for immediate correction during processing.

Purchase full article

Full view

E. Mota, A. Sousa, U. Černigoj, J. A. Queiroz, C. T. Tomaz, F. Sousa

Journal of Chromatography A (2013)

The demand for high-purity supercoiled plasmid DNA to be applied as a vector for new therapeutic strategies, such as gene therapy or DNA vaccination has increased in the last years. Thus, it is necessary to implement an analytical technique suitable to control the quality of the supercoiled plasmid as a pharmaceutical product during the manufacturing process. The present study describes a new methodology to quantify and monitor the purity of supercoiled plasmid DNA by using a monolithic column based on anion-exchange chromatography. This analytical method with UV detection allows the separation of the plasmid isoforms by combining a NaCl stepwise gradient. The specificity, linearity, accuracy, reproducibility and repeatability of the method have been evaluated, and the lower quantification and detection limits were also established. The validation was performed according to the guidelines, being demonstrated that the method is precise and accurate for a supercoiled plasmid concentration up to 200 μg/mL. The main advantage achieved by using this monolithic column is the possibility to quantify the supercoiled plasmid in a sample containing other plasmid topologies, in a 4 min experiment. This column also permits the assessment of the supercoiled plasmid DNA present in more complex samples, allowing to control its quality throughout the bioprocess. Therefore, these findings strengthen the possibility of using this monolithic column associated with a powerful analytical method to control the process development of supercoiled plasmid DNA production and purification for therapeutic applications.

Purchase full article

Full view

S. Haberl, M. Jarc, A. Štrancar, M. Peterka, D. Hodžić, D. Miklavčič

J Membrane Biol, DOI 10.1007/s00232-013-9580-5

The use of plasmid DNA (pDNA) as a pharmaceutical tool has increased since it represents a safer vector for gene transfer compared to viral vectors. Different pDNA extraction methods have been described; among them is alkaline lysis, currently the most commonly used. Although alkaline lysis represents an established method for isolation of pDNA, some drawbacks are recognized, such as entrapment of pDNA in cell debris, leading to lower pDNA recovery; the time-consuming process; and increase of the volume due to the buffers used, all leading to increased cost of production. We compared the concentration of extracted pDNA when two methods for extracting pDNA from Escherichia coli were used: alkaline lysis and a method based on membrane electroporation, electroextraction. At the same time, we also studied the effect of different pulse protocols on bacterial inactivation. The concentration of pDNA was assayed with anion exchange chromatography. When alkaline lysis was used, two incubations of lysis time (5 and 10 min) were compared in terms of the amount of isolated pDNA. We did not observe any difference in pDNA concentration regardless of incubation time used. In electroextraction, different pulse protocols were used in order to exceed the pDNA concentration obtained by alkaline lysis. We show that electroextraction gives a higher concentration of extracted pDNA than alkaline lysis, suggesting the use of electroporation as a potentially superior method for extracting pDNA from E. coli. In addition, electroextraction represents a quicker alternative to alkaline lysis for extracting pDNA.

Purchase full article

Full view

B. Gabor, U. Černigoj, M. Barut, A. Štrancar

Journal of Chromatography A, 1311 (2013) 106-114

HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0 kbp, 5.2 kbp and 14.0 kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport.

Purchase full article

Full view

M. Limonta, N. Lendero Krajnc, U. Vidic, L. Zumalacárregui

Biochemical Engineering Journal 80 (2013) 14-18

The pIDKE2 plasmid is the main component of the CIGB's candidate vaccine against Hepatitis C virus (HVC), which is being used in HCV chronically-infected individuals during clinical trials phase 1 and 2. The designed downstream process of pIDKE2 plasmid produces up to 179 g/year. In order to conduct further improvements, modelling of the downstream process was performed. A methodology based on process analysis tools, such as experimental design and modelling was established to identify factors with the highest influence on production cost and the amount of annual plasmid. Taking into account that the pIDKE2 downstream process designed is in its initial stages of development, CIM technology was evaluated as a new manufacturing process on lab scale. Purity and recovery of CIM technology was better than porous particle matrix, thus SuperPro Designer was used in order to simulate the purification process. Cost efficiency optimization of the pIDKE2 downstream process was done with the simulation model.

Purchase full article

Full view

P. Fernandes, C. Peixoto, VM Santiago, EJ Kremer, AS Coroadinha and PM Alves

Gene Therapy (2012), 1–8

Canine adenovirus type 2 (CAV-2) vectors overcome many of the clinical immunogenic concerns related to vectors derived from human adenoviruses (AdVs). In addition, CAV-2 vectors preferentially transduce neurons with an efficient traffic via axons to afferent regions when injected into the brain. To meet the need for preclinical and possibly clinical uses, scalable and robust production processes are required. CAV-2 vectors are currently produced in E1-transcomplementing dog kidney (DK) cells, which might raise obstacles in regulatory approval for clinical grade material production. In this study, a GMP-compliant bioprocess was developed. An MDCK-E1 cell line, developed by our group, was grown in scalable stirred tank bioreactors, using serum-free medium, and used to produce CAV-2 vectors that were afterwards purified using column chromatographic steps. Vectors producedin MDCK-E1 cells were identical to those produced in DK cells as assessed by SDS-PAGE and dynamic light scatering measurements (diameter and Zeta potential). Productivities of ~109 infectious particles (IP) ml-1 and 2x103 IP per cell were possible. A downstream process using technologies transferable to process scales was developed, yielding 63% global recovery. The total particles to IP ratio in the purified product (<20:1) was within the limits specified by the regulatory authorities for AdV vectors. These results constitute a step toward a scalable process for CAV-2 vector production compliant with clinical material specifications.

Attachments

Full view

P. Gerster, E.-M. Kopecky, N. Hammerschmidt, M. Klausberger, F. Krammer, R. Grabherr, C. Mersich, L. Urbas, P. Kramberger, T. Paril, M. Schreiner, K. Nöbauer, E. Razzazi-Fazeli, A. Jungbauer

Journal of Chromatography A, 1290 (2013) 36-45(2013) 36-45

A chromatographic process based on monoliths for purification of infective baculovirus without prior concentration step has been established. Baculovirus produced in Spodoptera frugiperda cells (Sf-9) were harvested by centrifugation, filtered through 0.8 μm filters and directly loaded onto radial 1 mL anion exchange monoliths with a channel size of 1.5–2.0 μm operated at a volumetric flow rate of one bed volume per minute. Optional an epoxy monolith was used as pre-column to reduce interfering compounds and substances influencing the capacity of anion exchange monoliths for baculovirus infectious virus could be eluted with a step gradient at salt concentrations of 440 mM NaCl. Recovery of infectious virus was highly influenced by composition and age of supernatant and ranged from 20 to >99% active baculovirus. Total protein content could be reduced to 1–8% and DNA content to 38–48% in main virus fraction. Infective virus could be 52-fold concentrated within 20.5 h and simultaneously an 82-fold volume reduction was possible when loading 1150 mL (2.1 × 108 pfu/mL) onto 1 mL scale support.

Purchase full article

Full view

A. Steyer, I. Gutierrez-Aguire, M. Kolenc, S. Koren, D. Kutnjak, M. Pokorn, M. Poljšak-Prijatelj, N. Rački, M. Ravnikar, M. Sagadin, A. Fratnik Steyer, N. Toplak

Journal of Clinical Microbiology, November 2013

Mammalian orthoreoviruses (MRV) are known to cause mild enteric and respiratory infections in humans. They are widespread and infect a broad spectrum of mammals. We report here the first case of MRV detected in a child with acute gastroenteritis, which showed the highest similarity to MRV reported recently in European bats. Stool sample examination of the child was negative for most common viral and bacterial pathogens. Reovirus particles were identified by electron microscopic examination of both stool suspension and cell culture supernatant. The whole genome sequence was obtained with the Ion Torrent next generation sequencing platform. Prior to sequencing, stool sample suspension and cell culture supernatant were pre-treated with nucleases and/or the convective interaction media (CIM) monolithic chromatographic method to purify and concentrate the target viral nucleic acid. Whole genome sequence analysis revealed that the Slovenian SI-MRV01 isolate was most similar to MRV found in bat in Germany. High similarity was shared in all genome segments, with nucleotide and amino acid identities between 93.8-99.0% and 98.4-99.7%, respectively. It was shown that CIM monolithic chromatography alone is an efficient method for enriching the sample in viral particles before nucleic acid isolation and next generation sequencing application.

Purchase full article

Full view

E. Maksimova, E. Vlakh, E. Sinitsyna, T. Tennikova
J. Sep. Sci. 2013, 36, 3741–3749

Ultrashort monolithic columns (disks) were thoroughly studied as efficient stationary phases for precipitation–dissolution chromatography of synthetic polymers. Gradient elution mode was applied in all chromatographic runs. The mixtures of different flexible chain homopolymers, such as polystyrenes, poly(methyl methacrylates), and poly(tert-butylmethacrylates) were separated according to their molecular weights on both commercial poly(styrene-co divinylbenzene).
disks (12 id × 3 mm and 5 × 5 mm) and lab-made monolithic columns (4.6 id × 50 mm) filled with supports of different hydrophobicity. The experimental conditions were optimized to reach fast and highly efficient separation. It was observed that, similar to the separation of monoliths of other classes of (macro)molecules (proteins, DNA, oligonucleotides), the length of column did not affect the peak resolution.
A comparison of the retention properties of the poly(styrene-co-divinylbenzene) diskshaped monoliths with those based on poly(lauryl methacrylate-co-ethylene dimethacrylate), poly(butyl methacrylate-co-ethylene dimethacrylate), and poly(glycidyl methacrylate-co-ethylene dimethacrylate) supports demonstrated the obvious effect of surface chemistry on the resolution factor. Additionally, the results of the discussed chromatographic mode on the fast determination of the molecular weights of homopolymers used in this study were compared to those established by SEC on columns packed with sorbent beads of a similar nature to the monoliths.

Purchase full article

Full view

Roy N D‘Souza, Ana M Azevedo, M Raquel Aires-Barros, Nika Lendero Krajnc, Petra Kramberger, Maria Laura Carbajal, Mariano Grasselli, Roland Meyer & Marcelo Fernández-Lahore

Vol. 1, No. 5, Pharmaceutical Bioprocessing (2013)

Downstream processing is currently the major bottleneck for bioproduct generation. In contrast to the advances in fermentation processes, the tools used for downstream processes have struggled to keep pace in the last 20 years. Purification bottlenecks are quite serious, as these processes can account for up to 80% of the total production cost. Coupled with the emergence of new classes of bioproducts, for example, virus-like particles or plasmidic DNA, this has created a great need for superior alternatives. In this review, improved downstream technologies, including aqueous two-phase systems, expanded bed adsorption chromatography, convective flow systems, and fibre-based adsorbent systems, have been discussed. These adaptive methods are more suited to the burgeoning downstream processing needs of the future, enabling the cost-efficient production of new classes biomaterials with a high degree of purity, and thereby hold the promise to become indispensable tools in the pharmaceutical and food industries.

Purchase full article

Full view

A. Ghanem, R. Healey, F. G. Adly

Analytica Chimica Acta 760 (2013) 1-15

Abstract

Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cellmediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.

Purchase full article

Full view

A. Romanovskaya, L. P. Sarina, D. H. Bamford, M. M. Poranen

Journal of Chromatography A (2013)

Recent advances in the field of RNA interference and new cost-effective approaches for large-scale double-stranded RNA (dsRNA) synthesis have fuelled the demand for robust high-performance purification techniques suitable for dsRNA molecules of various lengths. To address this issue, we developed an improved dsRNA purification method based on anion exchange chromatography utilizing convective interaction media (CIM) monolithic columns. To evaluate column performance we synthesized a selection of dsRNA molecules (58–1810 bp) in a one-step enzymatic reaction involving bacteriophage T7 DNA-dependent RNA polymerase and phi6 RNA-dependent RNA polymerase. In addition, small interfering RNAs (siRNAs) of 25–27 bp were generated by Dicer digestion of the genomic dsRNA of bacteriophage phi6. We demonstrated that linearly scalable CIM monolithic quaternary amine (QA) columns can be used as a fast and superior alternative to standard purification methods (e.g. LiCl precipitation) to obtain highly pure dsRNA preparations. The impurities following Dicer treatment were quickly and efficiently removed with the QA CIM monolithic column, yielding siRNA molecules of high purity suitable for potential therapeutic applications. Moreover, baseline separation of dsRNA molecules up to 1 kb in non-denaturing conditions was achieved.

Purchase full article

Full view

2012

J. Lee, H. T. Gan, S. M. Abdul Latiff , C. Chuah, W. Y. Lee, Y.-S. Yang, B. Loo, S. K. Ng, P. Gagnon

Journal of Chromatography A, 1270 (2012) 162-170

We introduce a chromatography method for purification of large proteins and viruses that works by capturing them at a non-reactive hydrophilic surface by their mutual steric exclusion of polyethylene glycol (PEG). No direct chemical interaction between the surface and the target species is required. We refer to the technique as steric exclusion chromatography. Hydroxyl-substituted polymethacrylate monoliths provide a hydrophilic surface and support convective mass transport that is unaffected by the viscosity of the PEG. Elution is achieved by reducing PEG concentration. Selectivity correlates with molecular size, with larger species retained more strongly than smaller species. Retention increases with PEG size and concentration. Salts weaken retention in proportion to their concentration and Hofmeister ranking. Retention is enhanced near the isoelectric point of the target species. Virus binding capacity was measured at 9.9 × 1012 plaque forming units per mL of monolith. 99.8% of host cell proteins and 93% of DNA were eliminated. Mass recovery exceeded 90%. IgM capacity was greater than 60 mg/mL. 95% of host cell proteins were eliminated from IgM produced in protein-free media, and mass recovery was up to 90%. Bioactivity was fully conserved by both viruses and antibodies. Process time ranged from less than 30 min to 2 h depending on the product concentration in the feed stream.

Purchase full article

Full view