On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!

Sample displacement chromatography of plasmid DNA isoforms

Urh Černigoj, Urška Martinuč, Sara Cardoso, Rok Sekirnik, Nika Lendero Krajnc, Aleš Štrancar

Sample displacement chromatography (SDC) is a chromatographic technique that utilises different rela-tive binding affinities of components in a sample mixture and has been widely studied in the context ofpeptide and protein purification. Here, we report a use of SDC to separate plasmid DNA (pDNA) isoformsunder overloading conditions, where supercoiled (sc) isoform acts as a displacer of open circular (oc) orlinear isoform. Since displacement is more efficient when mass transfer between stationary and mobilechromatographic phases is not limited by diffusion, we investigated convective interaction media (CIM)monoliths as stationary phases for pDNA isoform separation. CIM monoliths with different hydrophobic-ities and thus different binding affinities for pDNA (CIM C4 HLD, CIM-histamine and CIM-pyridine) weretested under hydrophobic interaction chromatography (HIC) conditions. SD efficiency for pDNA isoformseparation was shown to be dependent on column selectivity for individual isoform, column efficiencyand on ammonium sulfate (AS) concentration in loading buffer (binding strength). SD and negative modeelution often operate in parallel, therefore negative mode elution additionally influences the efficiencyof the overall purification process. Optimisation of chromatographic conditions achieved 98% sc pDNAhomogeneity and a dynamic binding capacity of over 1 mg/mL at a relatively low concentration of AS.SDC was successfully implemented for the enrichment of sc pDNA for plasmid vectors of different sizes,and for separation of linear and and sc isoforms, independently of oc:sc isoform ratio, and flow-rate used.This study therefore identifies SDC as a promising new approach to large-scale pDNA purification, whichis compatible with continuous, multicolumn chromatography systems, and could therefore be used toincrease productivity of pDNA production in the future.

Attachments