On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2003

A. Podgornik, M. Barut, A. Štrancar

Encyclopedia of Chromatography DOI: 10.1081/E-ECHR 120016288, 2003

Chromatographic columns are typically several centimeters in length, resulting in a high number of column plates, and, consequently, such columns have high efficiency. These properties allow even very similar molecules to be separated. This is especially true for smaller molecules, where the separation is based on selective migration. For large molecules, a different separation mechanism is usually required. Large molecules normally interact with the matrix at several binding sites. Consequently, their adsorption isotherms are very steep, almost rectangular. For such molecules, there exists only a very narrow mobile phase range within which they interact with the active moieties on the stationary phase, but are not irreversibly retained. To elute them from the matrix, a change of the mobile phase composition is required. Therefore the separation is based upon the selective elution and requires the use of gradient chromatographic methods. For this type of separation, the column length is less important and the efficient separations can be achieved even with extremely short columns.

Purchase full article

Full view

K. Branović, A. Buchacher, M. Barut, A. Štrancar, D. Josić

Journal of Chromatography B, 790 (2003) 175–182

It has been shown in a previous study that monolithic columns can be used for downstream processing of different concentrates of clotting factor IX [K. Branović et al., J. Chromatogr. A 903 (2000) 21]. This paper demonstrates that such supports are useful tools also at an early stage of the purification process of factor IX from human plasma. Starting with the eluate after solid-phase extraction with DEAE-Sephadex, the use of monolithic columns has allowed much better purification than that achieved with conventional anion-exchange supports. The period of time required for separation is also much reduced. In up-scaling experiments, separations are carried out with 8, 80 and 500 ml columns. A volume of 1830 ml of DEAE-Sephadex eluate, containing a total of 27.6 g of protein and 48.500 IU of factor IX is applied to the 500 ml monolithic column. This corresponds to a separation on a pilot scale. The results of this separation after up-scaling are comparable to those obtained with the 8 ml column on a laboratory scale.

Purchase full article

Full view

P. Kramberger, D. Glover, A. Štrancar

American Biotechnology Laboratory, 2003, 27-28

Research in molecular and cell biology has shown that macromolecules such as pDNA and virus vectors, together called nanoparticles, have the potential to assist in the prevention and treatment of some human diseases. The most important step in their production is the downstream processing (isolation and cleaning). Precipitation, ultrafiltration, and LC techniques are the most widely used for these purposes, but only LC can purify the product so that it is recognized as safe for therapeutic use.

Apart from reduced yield, downstream processing can cause minor or even major modifications in the structure of the biomolecule. Usually these modifications do not affect the activity of the product, but may change its antigenicity. Minimizing these changes to maintain product safety is the main objective in the downstream processing of nanoparticles. For the efficient isolation of labile biomolecules, liquid chromatographic supports should provide fast and efficient separation in order to decrease biomolecule degradation; have high, preferably flow-unaffected capacity and resolution; and exhibit low backpressure. They should be stable, even if harsh conditions are applied during sanitation (e.g., 1 MNaOH), and should be easy to handle and operate.

CIM® (Convection Interaction Media) monolithic chromatographic columns (BIA Separations, Ljubljana, Slovenia) meet all of these requirements. This application note will discuss the columns and their use on human models and plant viruses and pDNA.

Full view

I. Mihelič, A. Podgornik, T. Koloini

Journal of Chromatography A, 987 (2003) 159–168

This work investigates the influence of temperature on the binding capacity of bovine serum albumin (BSA), soybean trypsin inhibitor and l-glutamic acid to a CIM® (DEAE) weak anion-exchange disk monolithic column. The binding capacity was determined experimentally under dynamic conditions using frontal analysis. The effect on the dynamic binding capacity of dimers present in the BSA solution has been evaluated and a closed-loop frontal analysis was used to determine the equilibrium binding capacities. The binding capacity for both BSA and soybean trypsin inhibitor increased with increasing temperature. In the case of l-glutamic acid, an increase in the binding capacity was observed with temperature up to 20 °C. A further increase in temperature caused a decrease of the dynamic binding capacity.

Purchase full article

Full view

R. Hahn, E. Berger, K. Pflegerl, A. Jungbauer

Anal. Chem. 2003, 75, 543-548

When small ligands are immobilized onto a porous chromatography medium, only a limited number of binding sites contributes to the interaction with the target molecule. The main part of the ligand molecules is distributed on sites that are not accessible for the target protein due to steric hindrance. To direct the ligand into a well-accessible position, the ligand was conjugated to a large molecule that acted as a placeholder during the immobilization step. Then the placeholder molecule was cleaved off and washed out. Two linear peptides with affinity for lysozyme and human blood coagulation factor VIII, respectively, were studied as model systems. The protected peptide ligand was covalently linked to a 20-kDa poly(ethylene glycol) molecule containing an acid-labile linker. After selective deprotection of the peptide and purification, immobilization of this conjugate on a preactivated chromatography matrix was performed alternatively through the free N-terminus, the ε-amino group of lysine, or the sulfohydryl group of cysteine. After the immobilization reaction, the spacer molecule and remaining protecting groups were cleaved off and the gels were tested by affinity chromatography. This novel immobilization technique substantially increased the binding capacity and the ligand utilization for the target protein, and site-specific immobilization could be demonstrated.

Purchase full article

Full view

2002

A. Podgornik, M. Barut, S. Jakša, J. Jančar, A. Štrancar

Journal of Liquid Chromatography & Related Technologies Vol. 25, No. 20, pp. 3097–3114, 2002

Convective Interaction Media® (CIM) disk monolithic columns are specific among the chromatographic columns because of their monolithic structure and extremely short column length. In this work, HETP values and Z factors for different groups of molecules—proteins, DNA, oligonucleotides, peptides, and organic acids on strong anion exchange CIM disk monolithic columns were determined. Results are discussed in terms of the molecule structures and applied to develop different approaches for successful separation of abovementioned group of molecules on these types of columns.

Purchase full article

Full view

R. Hahn, M. Panzer, E. Hansen, J. Mollerup, A. Jungbauer

Separation Science and Technology, 37(7), 1545–1565 (2002)

The mass transfer properties of polyglycidylmethacrylate–ethylenedimethacrylate monolithic ion-exchangers (convective interaction media disks) were evaluated. As a reference material, the particulate ion-exchanger Source 30 was selected. The model proteins lysozyme, bovine serum albumin, and IgG were loaded at different concentrations and velocities. The mass transfer zones obtained with the monoliths were affected by neither the linear flow velocity nor the protein concentration in the mobile phase. The reduced height equivalent to one theoretical plate (HETP) of monoliths were independent of the reduced velocity. This was not the case for the particulate material.

Purchase full article

Full view

A. Štrancar, A. Podgornik, M. Barut, D. Glover

BIOforum International 3/2002

In adsorptive chromatographic modes, the slope of the capacity factor k' (defined as the molar ratio of the separated compound in the stationary phase and the mobile phase) plot versus composition of the mobile phase is very steep. Up to a certain composition of the mobile phase, k' is so high that the protein is bound to the stationary phase and does not move along the column. Reaching a defined point, a small change of the mobile phase composition causes a rapid decrease in k' to a value near zero. At this point, the protein dissolves in the mobile phase and passes through the column practically without any retention. In other words, the protein remains adsorbed at the top of the column until the eluting power of the mobile phase reaches the point at which a small change in the composition of the mobile phase causes the movement of the protein without any retention. One can also speak about selective elution of the compound. As a result of this process, even very short columns can provide very good separations and recovery, while longer columns might cause problems due to unspecific binding, product degradation and minor changes in the structure of the protein which increase with the length of the column. On the other hand, short-beds are very difficult to pack with particles and form channels which eliminate the resolution power of the column. Monolithic supports offer an ideal solution to avoid most of these problems.

Full view

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

J. Comb. Chem. 2002, 4, 33-37

Solid-phase peptide synthesis was performed on glycidyle methacrylate-co-ethylene dimethacrylate monoliths using Fmoc chemistry. The native epoxy groups were amino-functionalized by reaction with ethylenediamine or ammonia ions. A peptide directed against human blood coagulation factor VIII was synthesized as a model peptide. Amino acid analysis revealed the correct amino acid ratio as present in the sequence. The ligand density of 5 μmol/mL was equal to that achieved with conventional peptide immobilization via epoxy groups. These supports were directly used as peptide affinity chromatography matrixes. The functionality of the CIM monolithic supports was proven by affinity chromatography of factor VIII. The ammonia-functionalized support performed with low hydrophobicity and did not show unspecific adsorption of proteins.

Purchase full article

Full view

K. Branović, G. Lattner, M. Barut, A. Štrancar, D. Josić, A. Buchacher

Journal of Immunological Methods 9211 (2002) 20;271(1-2):47-58

Transferrin and albumin are often present in immunoglobulin G (IgG) concentrates and are considered as impurities. Therefore, it is important to determine their concentration in order to obtain a well-characterized biological product. Here, we describe their determination based on conjoint liquid chromatography (CLC). The established method combines two different chromatographic modes in one step: affinity and ion-exchange chromatography (IEC) combined in one column. Therefore, two CIM Protein G and one CIM quaternary amine (QA) monolithic disks were placed in series in one housing forming a CLC monolithic column. Binding conditions were optimized in a way that immunoglobulins were captured on the CIM Protein G disks, while transferrin and albumin were bound on the CIM QA disks. Subsequently, transferrin and albumin were eluted separately by a stepwise gradient with sodium chloride, whereas immunoglobulins were released from the Protein G ligands by applying low pH. A complete separation of all three proteins was achieved in less than 5 min. The method permits the quantification of albumin and transferrin in IgG concentrates and has been successfully validated.

Purchase full article

Full view

T. V. Gupalova, O. V. Lojkina, V. G. Palagnuk, A. A. Totolian, T.B. Tennikova

Journal of Chromatography A, 949 (2002) 185–193

The recombinantly produced different forms of protein G, namely monofunctional immunoglobulin G (IgG) binding, monofunctional serum albumin (SA) binding and bifunctional IgG/SA binding proteins G, are compared with respect to their specific affinities to blood IgG and SA. The affinity mode of the recently developed high-performance monolithic disk chromatography has been used for fast quantitative investigations. Using single affinity disks as well as two discs stacked into one separation unit, one order of magnitude in adsorption capacities for IgG and SA were found both for monofunctional and bifunctional protein G forms used as specific affinity ligands. However, despite the adsorption difference observed, the measured dissociation constants of the affinity complexes seemed to be very close. The analytical procedure developed can be realized within a couple of minutes. Up-scaling of the developed technology was carried out using another type of monolithic materials, i.e. CIM® affinity tubes.

Purchase full article

Full view

N. D. Ostryanina, G. P. Vlasov, T. B. Tennikova

Journal of Chromatography A, 949 (2002) 163–171

High-performance monolithic disk chromatography (HPMDC), including its affinity mode, is a very efficient method for fast separations of biological molecules of different sizes and shapes. In this paper, protein and peptide ligands, immobilized on the inner surface of thin, monolithic supports (Convective Interaction Media or CIM® disks), have been used to develop methods for fast, quantitative affinity fractionation of pools of polyclonal antibodies from blood sera of rabbits, immunized with complex protein–peptide conjugates. The combination of several disks with different affinity functionalities in the same cartridge enables the separation of different antibodies to be achieved within a few minutes. The apparent dissociation constants of affinity complexes were determined by frontal analysis. Variation of elution flow rate over a broad range does not affect the affinity separation characteristics. Indifferent synthetic peptides used as biocompatible spacers do not change the affinity properties of the ligands. The highly reproducible results of immunoaffinity HPMDC are compared with data obtained by widely used enzyme-linked immunosorbent assay.

Purchase full article

Full view

K. Pflegerl,A. Podgornik, E. Berger, A. Jungbauer

J. Comb. Chem. 2002, 4, 33-37

Solid-phase peptide synthesis was performed on glycidyle methacrylate-co-ethylene dimethacrylate monoliths using Fmoc chemistry. The native epoxy groups were amino-functionalized by reaction with ethylenediamine or ammonia ions. A peptide directed against human blood coagulation factor VIII was synthesized as a model peptide. Amino acid analysis revealed the correct amino acid ratio as present in the sequence. The ligand density of 5 μmol/mL was equal to that achieved with conventional peptide immobilization via epoxy groups. These supports were directly used as peptide affinity chromatography matrixes. The functionality of the CIM monolithic supports was proven by affinity chromatography of factor VIII. The ammonia-functionalized support performed with low hydrophobicity and did not show unspecific adsorption of proteins.

Purchase full article

Full view

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

Biotechnology and Bioengineering 79 (2002) 733-740

Screening of peptide ligands for affinity chromatography usually involves incubation with the target protein in a batch system. In an additional step, peptides with fast binding kinetics have to be selected in respect to satisfactory performance under flow conditions on a support ensuring optimal three-dimensional presentation of the peptide. We have developed a rapid screening system based on peptide synthesis and screening on CIM® disks. The disk size was minimized to fit into microplates usually applied for solid-phase extraction. In combination with a vacuum manifold, semi-automated peptide synthesis and screening for binding to a target protein under simulated chromatography conditions are possible. Various analytical methods can be applied for parallel and automated determination of the quantity, integrity, or activity of the target protein in the flow through or bound to the affinity support. This system also allows parallel screening for suitable chromatographic conditions like running buffer, washing, and elution conditions. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 79: 733–740, 2002.

Purchase full article

Full view

T. Tennikova, A. Štrancar

LabPlus international February - March 2002, Volume 16

Monolithic supports are a novel generation of stationary phases that can be used for liquid and gas chromatography, capillary electrochromatography, bioconversions, as well as supports for solid phase synthesis. In contrast to individual particles packed into chromatographic columns, monolithic supports are cast as continuous homogeneous phases. They provide high rates of mass transfer at lower pressure drops and enable much faster separations. In addition to the speed, the nature of the pores allows easy permeability for large molecules. Monolithic supports are thus the method of choice for the separation of proteins, oligonucleotides, and nanoparticles such as pDNA and viruses. In this article we review the application of the monlithic columns to bioaffinity chromatography.

Full view

N. D. Ostryanina, G. P. Vlasov, T. B. Tennikova

Journal of Chromatography A, 949 (2002) 163–171

High-performance monolithic disk chromatography (HPMDC), including its affinity mode, is a very efficient method for fast separations of biological molecules of different sizes and shapes. In this paper, protein and peptide ligands, immobilized on the inner surface of thin, monolithic supports (Convective Interaction Media or CIM® disks), have been used to develop methods for fast, quantitative affinity fractionation of pools of polyclonal antibodies from blood sera of rabbits, immunized with complex protein–peptide conjugates. The combination of several disks with different affinity functionalities in the same cartridge enables the separation of different antibodies to be achieved within a few minutes. The apparent dissociation constants of affinity complexes were determined by frontal analysis. Variation of elution flow rate over a broad range does not affect the affinity separation characteristics. Indifferent synthetic peptides used as biocompatible spacers do not change the affinity properties of the ligands. The highly reproducible results of immunoaffinity HPMDC are compared with data obtained by widely used enzyme-linked immunosorbent assay.

Purchase full article

Full view

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

Biotechnology and Bioengineering 79 (2002) 733-740

Screening of peptide ligands for affinity chromatography usually involves incubation with the target protein in a batch system. In an additional step, peptides with fast binding kinetics have to be selected in respect to satisfactory performance under flow conditions on a support ensuring optimal three-dimensional presentation of the peptide. We have developed a rapid screening system based on peptide synthesis and screening on CIM® disks. The disk size was minimized to fit into microplates usually applied for solid-phase extraction. In combination with a vacuum manifold, semi-automated peptide synthesis and screening for binding to a target protein under simulated chromatography conditions are possible. Various analytical methods can be applied for parallel and automated determination of the quantity, integrity, or activity of the target protein in the flow through or bound to the affinity support. This system also allows parallel screening for suitable chromatographic conditions like running buffer, washing, and elution conditions.

Purchase full article

Full view

2001

I. Mihelič, M. Krajnc, T. Koloini, A. Podgornik

Ind. Eng. Chem. Res. 2001, 40, 3495-3501

Monolithic stationary phases are becoming more and more important in the field of liquid chromatography, because they enable extremely fast separations. Methacrylate-based monoliths are produced via a free-radical bulk polymerization of glycidyl methacrylate and ethylene dimethacrylate using a benzoyl peroxide as an initiator. Preparation of large monoliths represents a big problem because of the heat release during the polymerization, which consequently leads to the distortion of the structure. A closer investigation of the polymerization, using differential scanning calorimetry, was performed in order to determine global kinetic parameters. A multiple heating rate method, based on the work of Ozawa, Flynn, and Wall, was applied for estimation of the values of the apparent activation energy, preexponential factor, and reaction order. Global polymerization kinetics is of first order with A = 1.681 × 109 s-1 and Ea,app = 81.5 kJ/mol, where the heat of polymerization is approximately 190 J/g. In addition, the influence of air and nitrogen atmosphere on polymerization is presented.

Purchase full article

Full view

M. Merhar, A. Podgornik, M. Barut, S. Jakša, M. Zigon, A. Štrancar

J. Liq. Chrom. & Rel. Technol., 24(16), 2429-2443 (2001)

Monoliths have already proven to be efficient chromatographic supports for the separation of various types of molecules. In this paper, the characterization of the novel reversed-phase support, CIM® RP-SDVB disk monolithic column is presented.

Using a 3 mm long RP-SDVB disk monolithic column, excellent separation of proteins within a very short time was achieved. The pressure drop observed on the column was considerably low (few bars), even at flow rates of the mobile phase up to 30 mL/min. Due to the low pressure drop, the use of high flow rates was preferred since they did not influence the quality of the gradient separation. The separation of test proteins was performed within only 14 seconds; faster separations were limited by the configuration of the HPLC system.

Furthermore, RP-SDVB disk monolithic columns were applied for fast separation of peptides. Five peptides of different lengths and composition were successfully separated in a very short time.

Finally, the preparative purification on the laboratory scale of the complex sample of oligodeoxynucleotide within a range of 1 minute demonstrates practical applicability of these columns.

Purchase full article

Full view

R. Hahn, A. Podgornik, M. Merhar, E. Schallaun, A. Jungbauer

Anal. Chem. 2001, 73, 5126-5132

An affinity monolith with a novel immobilization strategy was developed leading to a tailored pore structure. Hereby the ligand is conjugated to one of the monomers of the polymerization mixture prior to polymerization. After the polymerization, a monolithic structure was obtained either ready to use for affinity chromatography or ready for coupling of additional ligand to further increase the binding capacity. The model ligand, a peptide directed against lysozyme, was conjugated to glycidyl methacrylate prior to the polymerization. With this conjugate, glycidyl methacrylate, and ethylene dimethacrylate, a monolith was formed and tested with lysozyme. A better ligand presentation was achieved indicated by the higher affinity constant compared to a conventional sorbent.

Purchase full article

Full view