On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2004

E. G. Vlakh, A. Tappe, C. Kasper, T. B. Tennikova

Journal of Chromatography B, 810 (2004) 15–23

Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein’s denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA–EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.

Purchase full article

Full view

E. G. Vlakh, A. Tappe, C. Kasper, T. B. Tennikova

Journal of Chromatography B, 810 (2004) 15–23

Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein’s denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA–EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.

Purchase full article

Full view

E. Vlakh, N. Ostryanina, A. Jungbauer, T. Tennikova

Journal of Biotechnology 107 (2004) 275–284

Present report demonstrates the examples of practical application of sorbents obtained via direct solid phase peptide synthesis (SPPS) on GMA-EDMA monoliths (CIM® Disks, BIA Separations, d.o.o., Ljubljana, Slovenia). Several peptidyl complementary to recombinant tissue plasminogen activator (t-PA) ligands have been synthesized using Fmoc-chemistry. This approach affords to get directly sorbents for affinity chromatography avoiding a cleavage of synthesized peptides from a carrier following by their isolation, analysis and purification. The affinity binding parameters were found from experimental frontal analysis data. The results have been compared with those established for CIM® affinity sorbents obtained by immobilization of the same but preliminarily synthesized on convenient resin, cleaved and purified ligands on the disks using one step reaction with epoxy groups of monolithic material. It has been shown that the affinity constants of these two kinds of sorbent did not vary significantly. Directly obtained affinity sorbents have been used for fast and efficient on-line analysis as well as semi-preparative isolation of recombinant t-PA from crude cellular supernatant.

Purchase full article

Full view

P. N. Nesterenko, M. A. Rybalko

Mendeleev Commun. 2004

The continuous flow gradient and its effect on chromatographic parameters were investigated for the separations of inorganic anions on a monolithic porous disk with bonded hydroxyproline residues.

Purchase full article

Full view

2003

E. G. Vlakh, G. A. Platonova, G. P. Vlasov, C. Kasper, A. Tappe, G. Kretzmer, T. B. Tennikova

Journal of Chromatography A, 992 (2003) 109–119

The recently discovered serine protease called tissue plasminogen activator (t-PA) enables efficient dissolution of blood clots. t-PA works by converting plasminogen into its active form, plasmin, dissolving the major component of blood clots, fibrin. The activation of plasminogen by t-PA is enhanced by the presence of fibrin, and this is probably due to the fact that both plasminogen and t-PA possess high affinity binding sites for fibrin. Besides fibrin, fibrin monomers and some fibrin(ogen) degradation products, certain synthetic polymers (for instance, poly-l-lysines) can provide the same stimulation of plasminogen activation. The recently developed high-performance monolithic-disk chromatography, HPMDC, could become the most convenient way to study biological pairs of interest. The inherent speed of HPMDC isolation facilitates the recovery of a biologically active product, since the exposure to putative denaturing influences, such as solvents or temperature, is reduced. The better mass transfer mechanism (convection rather than diffusion) allows to consider only the biospecific reaction as time limiting. The step-by-step modeling of hypothetical affinity pairs between t-PA and different types of oligo/polymer forms of linear and branched lysine derivatives obtained both by initiated polycondensation and solid-phase peptide synthesis using HPMDC seemed to be possible and a quite useful tool. The results of quantitative evaluation of such affinity interactions were compared with those established for natural affinity counterparts to t-PA (monoclonal antibodies, plasminogen, fibrinogen). The role of steric structure of lysine ligands was observed and analyzed. The results allowing to make the practical choice of affinity systems will be used for development of fast and efficient analytical and preparative methods for the downstream processes of recombinant production of this valuable enzyme.

Purchase full article

Full view

I. Mihelič, T. Koloini, A. Podgornik

Journal of Applied Polymer Science, Vol. 87, 2326-2334 (2003)

Monolithic stationary phases are becoming increasingly important in the field of liquid chromatography. Methacrylate-based monoliths are produced via free-radical bulk polymerization. The preparation of large-volume monoliths is a major problem because the intensive heat released during polymerization causes distortion of the porous monolithic structure. This work presents experimental measurements of temperature distributions during polymerization in moulds of different sizes and at various experimental conditions. A mathematical model for the prediction of temporal and spatial temperature distribution during the polymerization of methacrylate-based monolithic columns is introduced. The polymerization is described by an unsteady-state heat conduction equation with the generation of heat related to the general kinetics of polymerization. Predictions from the mathematical model are in good agreement with the experimental measurements at different experimental conditions. A method for construction of large-volume monolithic columns is presented and an attempt is made to adopt the developed mathematical model in annular geometry.

Purchase full article

Full view

P. Milavec Žmak, H. Podgornik, J. Jančar, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1006 (2003) 195–205

Convective Interaction Media (CIM) columns are monolithic columns optimized for the separation of macromolecules. Some of them operate in the axial mode while others operate in the radial mode depending on the column size. In this work we tested the approach suggested by Yamamoto [Biotechnol. Bioeng., 48 (1995) 444] for transfer of gradient methods between columns of different size. A simplified equation for transfer was derived together with a criterion for its application. Separation was evaluated for a standard protein mixture and peroxidase enzymes present in fermentation broth. Salt and pH gradients were applied. Similar resolutions were obtained for each sample on all columns which demonstrates that the proposed approach can be successfully used for method scale-up on this type of column.

Purchase full article

Full view

M. Merhar, A. Podgornik, M. Barut, M. Žigon, A. Štrancar

J. Sep. Sci. 2003, 26, 322–330

Methacrylate-based monoliths are formed during radical copolymerization as a consequence of the precipitation of polymeric chains from the reaction mixture, which consists of monomers, initiator, and the porogenic solvents. The effect of various methacrylate monomers on the porous structure of the monolith was investigated. Although the chemical structure of the monomers significantly affects the size of the pores and the porosity, the mechanism of pore formation in the case of the precipitation during polymerization is preserved. The porous structure was further correlated with the specific surface area, pressure drop, and dynamic binding capacity of the monoliths studied.

Purchase full article

Full view

A. Podgornik, M. Barut, A. Štrancar

Encyclopedia of Chromatography DOI: 10.1081/E-ECHR 120016288, 2003

Chromatographic columns are typically several centimeters in length, resulting in a high number of column plates, and, consequently, such columns have high efficiency. These properties allow even very similar molecules to be separated. This is especially true for smaller molecules, where the separation is based on selective migration. For large molecules, a different separation mechanism is usually required. Large molecules normally interact with the matrix at several binding sites. Consequently, their adsorption isotherms are very steep, almost rectangular. For such molecules, there exists only a very narrow mobile phase range within which they interact with the active moieties on the stationary phase, but are not irreversibly retained. To elute them from the matrix, a change of the mobile phase composition is required. Therefore the separation is based upon the selective elution and requires the use of gradient chromatographic methods. For this type of separation, the column length is less important and the efficient separations can be achieved even with extremely short columns.

Purchase full article

Full view

K. Branović, A. Buchacher, M. Barut, A. Štrancar, D. Josić

Journal of Chromatography B, 790 (2003) 175–182

It has been shown in a previous study that monolithic columns can be used for downstream processing of different concentrates of clotting factor IX [K. Branović et al., J. Chromatogr. A 903 (2000) 21]. This paper demonstrates that such supports are useful tools also at an early stage of the purification process of factor IX from human plasma. Starting with the eluate after solid-phase extraction with DEAE-Sephadex, the use of monolithic columns has allowed much better purification than that achieved with conventional anion-exchange supports. The period of time required for separation is also much reduced. In up-scaling experiments, separations are carried out with 8, 80 and 500 ml columns. A volume of 1830 ml of DEAE-Sephadex eluate, containing a total of 27.6 g of protein and 48.500 IU of factor IX is applied to the 500 ml monolithic column. This corresponds to a separation on a pilot scale. The results of this separation after up-scaling are comparable to those obtained with the 8 ml column on a laboratory scale.

Purchase full article

Full view

P. Kramberger, D. Glover, A. Štrancar

American Biotechnology Laboratory, 2003, 27-28

Research in molecular and cell biology has shown that macromolecules such as pDNA and virus vectors, together called nanoparticles, have the potential to assist in the prevention and treatment of some human diseases. The most important step in their production is the downstream processing (isolation and cleaning). Precipitation, ultrafiltration, and LC techniques are the most widely used for these purposes, but only LC can purify the product so that it is recognized as safe for therapeutic use.

Apart from reduced yield, downstream processing can cause minor or even major modifications in the structure of the biomolecule. Usually these modifications do not affect the activity of the product, but may change its antigenicity. Minimizing these changes to maintain product safety is the main objective in the downstream processing of nanoparticles. For the efficient isolation of labile biomolecules, liquid chromatographic supports should provide fast and efficient separation in order to decrease biomolecule degradation; have high, preferably flow-unaffected capacity and resolution; and exhibit low backpressure. They should be stable, even if harsh conditions are applied during sanitation (e.g., 1 MNaOH), and should be easy to handle and operate.

CIM® (Convection Interaction Media) monolithic chromatographic columns (BIA Separations, Ljubljana, Slovenia) meet all of these requirements. This application note will discuss the columns and their use on human models and plant viruses and pDNA.

Full view

I. Mihelič, A. Podgornik, T. Koloini

Journal of Chromatography A, 987 (2003) 159–168

This work investigates the influence of temperature on the binding capacity of bovine serum albumin (BSA), soybean trypsin inhibitor and l-glutamic acid to a CIM® (DEAE) weak anion-exchange disk monolithic column. The binding capacity was determined experimentally under dynamic conditions using frontal analysis. The effect on the dynamic binding capacity of dimers present in the BSA solution has been evaluated and a closed-loop frontal analysis was used to determine the equilibrium binding capacities. The binding capacity for both BSA and soybean trypsin inhibitor increased with increasing temperature. In the case of l-glutamic acid, an increase in the binding capacity was observed with temperature up to 20 °C. A further increase in temperature caused a decrease of the dynamic binding capacity.

Purchase full article

Full view

R. Hahn, E. Berger, K. Pflegerl, A. Jungbauer

Anal. Chem. 2003, 75, 543-548

When small ligands are immobilized onto a porous chromatography medium, only a limited number of binding sites contributes to the interaction with the target molecule. The main part of the ligand molecules is distributed on sites that are not accessible for the target protein due to steric hindrance. To direct the ligand into a well-accessible position, the ligand was conjugated to a large molecule that acted as a placeholder during the immobilization step. Then the placeholder molecule was cleaved off and washed out. Two linear peptides with affinity for lysozyme and human blood coagulation factor VIII, respectively, were studied as model systems. The protected peptide ligand was covalently linked to a 20-kDa poly(ethylene glycol) molecule containing an acid-labile linker. After selective deprotection of the peptide and purification, immobilization of this conjugate on a preactivated chromatography matrix was performed alternatively through the free N-terminus, the ε-amino group of lysine, or the sulfohydryl group of cysteine. After the immobilization reaction, the spacer molecule and remaining protecting groups were cleaved off and the gels were tested by affinity chromatography. This novel immobilization technique substantially increased the binding capacity and the ligand utilization for the target protein, and site-specific immobilization could be demonstrated.

Purchase full article

Full view

2002

A. Podgornik, M. Barut, S. Jakša, J. Jančar, A. Štrancar

Journal of Liquid Chromatography & Related Technologies Vol. 25, No. 20, pp. 3097–3114, 2002

Convective Interaction Media® (CIM) disk monolithic columns are specific among the chromatographic columns because of their monolithic structure and extremely short column length. In this work, HETP values and Z factors for different groups of molecules—proteins, DNA, oligonucleotides, peptides, and organic acids on strong anion exchange CIM disk monolithic columns were determined. Results are discussed in terms of the molecule structures and applied to develop different approaches for successful separation of abovementioned group of molecules on these types of columns.

Purchase full article

Full view

R. Hahn, M. Panzer, E. Hansen, J. Mollerup, A. Jungbauer

Separation Science and Technology, 37(7), 1545–1565 (2002)

The mass transfer properties of polyglycidylmethacrylate–ethylenedimethacrylate monolithic ion-exchangers (convective interaction media disks) were evaluated. As a reference material, the particulate ion-exchanger Source 30 was selected. The model proteins lysozyme, bovine serum albumin, and IgG were loaded at different concentrations and velocities. The mass transfer zones obtained with the monoliths were affected by neither the linear flow velocity nor the protein concentration in the mobile phase. The reduced height equivalent to one theoretical plate (HETP) of monoliths were independent of the reduced velocity. This was not the case for the particulate material.

Purchase full article

Full view

A. Štrancar, A. Podgornik, M. Barut, D. Glover

BIOforum International 3/2002

In adsorptive chromatographic modes, the slope of the capacity factor k' (defined as the molar ratio of the separated compound in the stationary phase and the mobile phase) plot versus composition of the mobile phase is very steep. Up to a certain composition of the mobile phase, k' is so high that the protein is bound to the stationary phase and does not move along the column. Reaching a defined point, a small change of the mobile phase composition causes a rapid decrease in k' to a value near zero. At this point, the protein dissolves in the mobile phase and passes through the column practically without any retention. In other words, the protein remains adsorbed at the top of the column until the eluting power of the mobile phase reaches the point at which a small change in the composition of the mobile phase causes the movement of the protein without any retention. One can also speak about selective elution of the compound. As a result of this process, even very short columns can provide very good separations and recovery, while longer columns might cause problems due to unspecific binding, product degradation and minor changes in the structure of the protein which increase with the length of the column. On the other hand, short-beds are very difficult to pack with particles and form channels which eliminate the resolution power of the column. Monolithic supports offer an ideal solution to avoid most of these problems.

Full view

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

J. Comb. Chem. 2002, 4, 33-37

Solid-phase peptide synthesis was performed on glycidyle methacrylate-co-ethylene dimethacrylate monoliths using Fmoc chemistry. The native epoxy groups were amino-functionalized by reaction with ethylenediamine or ammonia ions. A peptide directed against human blood coagulation factor VIII was synthesized as a model peptide. Amino acid analysis revealed the correct amino acid ratio as present in the sequence. The ligand density of 5 μmol/mL was equal to that achieved with conventional peptide immobilization via epoxy groups. These supports were directly used as peptide affinity chromatography matrixes. The functionality of the CIM monolithic supports was proven by affinity chromatography of factor VIII. The ammonia-functionalized support performed with low hydrophobicity and did not show unspecific adsorption of proteins.

Purchase full article

Full view

K. Branović, G. Lattner, M. Barut, A. Štrancar, D. Josić, A. Buchacher

Journal of Immunological Methods 9211 (2002) 20;271(1-2):47-58

Transferrin and albumin are often present in immunoglobulin G (IgG) concentrates and are considered as impurities. Therefore, it is important to determine their concentration in order to obtain a well-characterized biological product. Here, we describe their determination based on conjoint liquid chromatography (CLC). The established method combines two different chromatographic modes in one step: affinity and ion-exchange chromatography (IEC) combined in one column. Therefore, two CIM Protein G and one CIM quaternary amine (QA) monolithic disks were placed in series in one housing forming a CLC monolithic column. Binding conditions were optimized in a way that immunoglobulins were captured on the CIM Protein G disks, while transferrin and albumin were bound on the CIM QA disks. Subsequently, transferrin and albumin were eluted separately by a stepwise gradient with sodium chloride, whereas immunoglobulins were released from the Protein G ligands by applying low pH. A complete separation of all three proteins was achieved in less than 5 min. The method permits the quantification of albumin and transferrin in IgG concentrates and has been successfully validated.

Purchase full article

Full view

T. V. Gupalova, O. V. Lojkina, V. G. Palagnuk, A. A. Totolian, T.B. Tennikova

Journal of Chromatography A, 949 (2002) 185–193

The recombinantly produced different forms of protein G, namely monofunctional immunoglobulin G (IgG) binding, monofunctional serum albumin (SA) binding and bifunctional IgG/SA binding proteins G, are compared with respect to their specific affinities to blood IgG and SA. The affinity mode of the recently developed high-performance monolithic disk chromatography has been used for fast quantitative investigations. Using single affinity disks as well as two discs stacked into one separation unit, one order of magnitude in adsorption capacities for IgG and SA were found both for monofunctional and bifunctional protein G forms used as specific affinity ligands. However, despite the adsorption difference observed, the measured dissociation constants of the affinity complexes seemed to be very close. The analytical procedure developed can be realized within a couple of minutes. Up-scaling of the developed technology was carried out using another type of monolithic materials, i.e. CIM® affinity tubes.

Purchase full article

Full view

N. D. Ostryanina, G. P. Vlasov, T. B. Tennikova

Journal of Chromatography A, 949 (2002) 163–171

High-performance monolithic disk chromatography (HPMDC), including its affinity mode, is a very efficient method for fast separations of biological molecules of different sizes and shapes. In this paper, protein and peptide ligands, immobilized on the inner surface of thin, monolithic supports (Convective Interaction Media or CIM® disks), have been used to develop methods for fast, quantitative affinity fractionation of pools of polyclonal antibodies from blood sera of rabbits, immunized with complex protein–peptide conjugates. The combination of several disks with different affinity functionalities in the same cartridge enables the separation of different antibodies to be achieved within a few minutes. The apparent dissociation constants of affinity complexes were determined by frontal analysis. Variation of elution flow rate over a broad range does not affect the affinity separation characteristics. Indifferent synthetic peptides used as biocompatible spacers do not change the affinity properties of the ligands. The highly reproducible results of immunoaffinity HPMDC are compared with data obtained by widely used enzyme-linked immunosorbent assay.

Purchase full article

Full view