On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2003

M. Vodopivec, A. Podgornik, M. Berovič, A. Štrancar

Journal of Chromatography B, 795 (2003) 105-113

The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis–Menten constant Km and the turnover number k3 of the immobilized enzymes were found to be flow-unaffected. Furthermore, the Km values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.

Purchase full article

Full view

2002

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

J. Comb. Chem. 2002, 4, 33-37

Solid-phase peptide synthesis was performed on glycidyle methacrylate-co-ethylene dimethacrylate monoliths using Fmoc chemistry. The native epoxy groups were amino-functionalized by reaction with ethylenediamine or ammonia ions. A peptide directed against human blood coagulation factor VIII was synthesized as a model peptide. Amino acid analysis revealed the correct amino acid ratio as present in the sequence. The ligand density of 5 μmol/mL was equal to that achieved with conventional peptide immobilization via epoxy groups. These supports were directly used as peptide affinity chromatography matrixes. The functionality of the CIM monolithic supports was proven by affinity chromatography of factor VIII. The ammonia-functionalized support performed with low hydrophobicity and did not show unspecific adsorption of proteins.

Purchase full article

Full view

K. Branović, G. Lattner, M. Barut, A. Štrancar, D. Josić, A. Buchacher

Journal of Immunological Methods 9211 (2002) 20;271(1-2):47-58

Transferrin and albumin are often present in immunoglobulin G (IgG) concentrates and are considered as impurities. Therefore, it is important to determine their concentration in order to obtain a well-characterized biological product. Here, we describe their determination based on conjoint liquid chromatography (CLC). The established method combines two different chromatographic modes in one step: affinity and ion-exchange chromatography (IEC) combined in one column. Therefore, two CIM Protein G and one CIM quaternary amine (QA) monolithic disks were placed in series in one housing forming a CLC monolithic column. Binding conditions were optimized in a way that immunoglobulins were captured on the CIM Protein G disks, while transferrin and albumin were bound on the CIM QA disks. Subsequently, transferrin and albumin were eluted separately by a stepwise gradient with sodium chloride, whereas immunoglobulins were released from the Protein G ligands by applying low pH. A complete separation of all three proteins was achieved in less than 5 min. The method permits the quantification of albumin and transferrin in IgG concentrates and has been successfully validated.

Purchase full article

Full view

T. V. Gupalova, O. V. Lojkina, V. G. Palagnuk, A. A. Totolian, T.B. Tennikova

Journal of Chromatography A, 949 (2002) 185–193

The recombinantly produced different forms of protein G, namely monofunctional immunoglobulin G (IgG) binding, monofunctional serum albumin (SA) binding and bifunctional IgG/SA binding proteins G, are compared with respect to their specific affinities to blood IgG and SA. The affinity mode of the recently developed high-performance monolithic disk chromatography has been used for fast quantitative investigations. Using single affinity disks as well as two discs stacked into one separation unit, one order of magnitude in adsorption capacities for IgG and SA were found both for monofunctional and bifunctional protein G forms used as specific affinity ligands. However, despite the adsorption difference observed, the measured dissociation constants of the affinity complexes seemed to be very close. The analytical procedure developed can be realized within a couple of minutes. Up-scaling of the developed technology was carried out using another type of monolithic materials, i.e. CIM® affinity tubes.

Purchase full article

Full view

N. D. Ostryanina, G. P. Vlasov, T. B. Tennikova

Journal of Chromatography A, 949 (2002) 163–171

High-performance monolithic disk chromatography (HPMDC), including its affinity mode, is a very efficient method for fast separations of biological molecules of different sizes and shapes. In this paper, protein and peptide ligands, immobilized on the inner surface of thin, monolithic supports (Convective Interaction Media or CIM® disks), have been used to develop methods for fast, quantitative affinity fractionation of pools of polyclonal antibodies from blood sera of rabbits, immunized with complex protein–peptide conjugates. The combination of several disks with different affinity functionalities in the same cartridge enables the separation of different antibodies to be achieved within a few minutes. The apparent dissociation constants of affinity complexes were determined by frontal analysis. Variation of elution flow rate over a broad range does not affect the affinity separation characteristics. Indifferent synthetic peptides used as biocompatible spacers do not change the affinity properties of the ligands. The highly reproducible results of immunoaffinity HPMDC are compared with data obtained by widely used enzyme-linked immunosorbent assay.

Purchase full article

Full view

K. Pflegerl,A. Podgornik, E. Berger, A. Jungbauer

J. Comb. Chem. 2002, 4, 33-37

Solid-phase peptide synthesis was performed on glycidyle methacrylate-co-ethylene dimethacrylate monoliths using Fmoc chemistry. The native epoxy groups were amino-functionalized by reaction with ethylenediamine or ammonia ions. A peptide directed against human blood coagulation factor VIII was synthesized as a model peptide. Amino acid analysis revealed the correct amino acid ratio as present in the sequence. The ligand density of 5 μmol/mL was equal to that achieved with conventional peptide immobilization via epoxy groups. These supports were directly used as peptide affinity chromatography matrixes. The functionality of the CIM monolithic supports was proven by affinity chromatography of factor VIII. The ammonia-functionalized support performed with low hydrophobicity and did not show unspecific adsorption of proteins.

Purchase full article

Full view

N. D. Ostryanina, G. P. Vlasov, T. B. Tennikova

Journal of Chromatography A, 949 (2002) 163–171

High-performance monolithic disk chromatography (HPMDC), including its affinity mode, is a very efficient method for fast separations of biological molecules of different sizes and shapes. In this paper, protein and peptide ligands, immobilized on the inner surface of thin, monolithic supports (Convective Interaction Media or CIM® disks), have been used to develop methods for fast, quantitative affinity fractionation of pools of polyclonal antibodies from blood sera of rabbits, immunized with complex protein–peptide conjugates. The combination of several disks with different affinity functionalities in the same cartridge enables the separation of different antibodies to be achieved within a few minutes. The apparent dissociation constants of affinity complexes were determined by frontal analysis. Variation of elution flow rate over a broad range does not affect the affinity separation characteristics. Indifferent synthetic peptides used as biocompatible spacers do not change the affinity properties of the ligands. The highly reproducible results of immunoaffinity HPMDC are compared with data obtained by widely used enzyme-linked immunosorbent assay.

Purchase full article

Full view

H. Podgornik, A. Podgornik

Enzyme and Microbial Technology 31 (2002) 855–861

The possibility of covalent attachment of LiP H2 and LiP H8 to CIM monoliths was studied. Due to negligible diffusional resistance, they can be useful tools to study characteristics of the immobilized lignin peroxidase (LiP). Immobilization to epoxy groups was performed using alkaline conditions (borate-phosphate buffer; pH 7.5). Characteristics of immobilized LiP were compared and factors that influence their biologic activity were evaluated using flow through experiments. Enzyme kinetics was determined via oxidation of veratryl alcohol (VA) into veratraldehyde (Vald). While VA oxidation rate increased by increasing flow rate (up to 1.5 ml/min) for LiP H2, it was almost constant in a wide flow rate range for LiP H8. This observation together with the stepwise deactivation of the enzyme by consecutive experiments was ascribed to accumulation of the formed Vald inside the support. Calculated kinetic parameters showed 3–5 times higher Km value for VA for both tested isoforms in comparison to free enzyme. The catalytic constant was found to be approximately 0.5 s-1 for both isoforms. Immobilized LiP H8 was used for decolorization of azo dye Mahogany.

Purchase full article

Full view

A. Podgornik, T. B. Tennikova

Advances in Biochemical Engineering/ Biotechnology, 2002, Vol. 76, 167-206

In the last decade there were many papers published on the study of enzyme catalyzed reactions performed in so-called chromatographic reactors. The attractive feature of such systems is that during the course of the reaction the compounds are already separated, which can drive the reaction beyond the thermodynamic equilibrium as well as remove putative inhibitors. In this chapter, an overview of such chromatographic bioreactor systems is given. Besides, some immobilization techniques to improve enzyme activity are discussed together with modern chromatographic supports with improved hydrodynamic characteristics to be used in this context.

Purchase full article

Full view

H. Podgornik, A. Podgornik

Enzyme and Microbial Technology 31 (2002) 855–861

The possibility of covalent attachment of LiP H2 and LiP H8 to CIM monoliths was studied. Due to negligible diffusional resistance, they can be useful tools to study characteristics of the immobilized lignin peroxidase (LiP). Immobilization to epoxy groups was performed using alkaline conditions (borate-phosphate buffer; pH 7.5). Characteristics of immobilized LiP were compared and factors that influence their biologic activity were evaluated using flow through experiments. Enzyme kinetics was determined via oxidation of veratryl alcohol (VA) into veratraldehyde (Vald). While VA oxidation rate increased by increasing flow rate (up to 1.5 ml/min) for LiP H2, it was almost constant in a wide flow rate range for LiP H8. This observation together with the stepwise deactivation of the enzyme by consecutive experiments was ascribed to accumulation of the formed Vald inside the support. Calculated kinetic parameters showed 3–5 times higher Km value for VA for both tested isoforms in comparison to free enzyme. The catalytic constant was found to be approximately 0.5 s−1 for both isoforms. Immobilized LiP H8 was used for decolorization of azo dye Mahogany.

Purchase full article

Full view

2001

P. Svete, R. Milačič, B. Mitrović, B. Pihlar

The Royal Society of Chemistry 2001, Analyst, 2001, 126, 1346–1354

Analytical procedures were developed for the speciation of Zn using fast protein liquid chromatography (FPLC), flame atomic absorption spectrometry (FAAS) and convective interaction media (CIM) fast monolithic chromatography with FAAS and electrospray (ES)-MS-MS detection. The investigation was performed on synthetic solutions (2 µg cm-3 Zn) of hydrated Zn2+ species and Zn complexes with citrate, oxalate and EDTA (ligand-to-Zn molar ratio 100 : 1) over a pH range from 5.4 to 7.4. It was found that Zn interacts with various buffers and the careful adjustment of the pH with diluted solutions of KOH is, therefore, required. FPLC separations were carried out on a Mono Q HR 5/5 strong anion-exchange column, applying an aqueous 1 mol dm-3 NH4NO3 linear gradient elution over 15 min, at a flow rate of 1.0 cm3 min−1. The separated Zn species were determined in 1.0 cm3 eluate fractions “off line” by FAAS. Speciation of Zn was also performed on a weak anion-exchange CIM DEAE fast monolithic disc by applying an aqueous 0.4 mol dm-3 NH4NO3 linear gradient elution over 7.5 min, at a flow rate of 2.0 cm3 min−1 and determination of the separated Zn species in 1.0 cm3 eluate fractions “off line” by FAAS. Zn-binding ligands in separated fractions were also characterized by electrospray (ES)-MS-MS analysis. The CIM DEAE disc was found to be more efficient in the separation of negatively charged Zn complexes than the Mono Q FPLC column. On the CIM DEAE disc Zn–citrate was separated from both Zn–oxalate and from Zn–EDTA. All these species were also separated from hydrated Zn2+, which was eluted with the solvent front. This method has an advantage over commonly used analytical techniques for the speciation of Zn which are only able to distinguish between labile and strong Zn complexes. Good repeatability of the measurements (RSD 2–4%), tested for six parallel determinations (2 µg cm-3 Zn) of Zn–EDTA, Zn–citrate and Zn–oxalate was found at a pH of 6.4 on a CIM DAEA disc. The limit of detection (3s) for the separated Zn species was 10 ng cm-3. The proposed analytical procedure was applied to the speciation of Zn in aqueous soil extracts and industrial waste water from a lead and zinc mining area.

Purchase full article

Full view

R. Hahn, A. Podgornik, M. Merhar, E. Schallaun, A. Jungbauer

Anal. Chem. 2001, 73, 5126-5132

An affinity monolith with a novel immobilization strategy was developed leading to a tailored pore structure. Hereby the ligand is conjugated to one of the monomers of the polymerization mixture prior to polymerization. After the polymerization, a monolithic structure was obtained either ready to use for affinity chromatography or ready for coupling of additional ligand to further increase the binding capacity. The model ligand, a peptide directed against lysozyme, was conjugated to glycidyl methacrylate prior to the polymerization. With this conjugate, glycidyl methacrylate, and ethylene dimethacrylate, a monolith was formed and tested with lysozyme. A better ligand presentation was achieved indicated by the higher affinity constant compared to a conventional sorbent.

Purchase full article

Full view

D. Josić, A. Buchacher

J. Biochem. Biophys. Methods 49 (2001) 153–174

Monoliths are useful chromatographic supports, as their structure allows improved mass transport. This results in fast separation. Once the ligand of interest has been immobilized, chromatographic separation can also be accomplished in affinity mode. Ligands with low molecular mass have been shown to be the easiest to immobilize. Nowadays, ligands with low molecular mass are often designed by combinatorial chemical techniques. In addition, many applications have been described where ligands with high molecular mass, such as Proteins A and G, antibodies, lectins and receptors are used.

The immobilization of an enzyme on the monolithic support creates a flow-through reactor. Small proteins, such as carbonic anhydrase, can be directly immobilized on the support. However, in the case of large molecules, the active center of the enzyme is no longer accessible at all or only to a limited degree. An improvement can be achieved by introducing a spacer, which allows maximum enzymatic conversion. Fast conversion of substrates with high molecular mass has been investigated with immobilized trypsin. It was shown that in case of high-molecular-mass substrates, the conversion rate depends very much on the flow-rate. Most applications described have been performed on an analytical or semi-preparative scale. However, the technical problems of up-scaling are close to being definitely solved, enabling enzymatic conversion on a preparative scale in the future.

Purchase full article

Full view

D. Josić, A. Buchacher

J. Biochem. Biophys. Methods 49 (2001) 153–174

Monoliths are useful chromatographic supports, as their structure allows improved mass transport. This results in fast separation. Once the ligand of interest has been immobilized, chromatographic separation can also be accomplished in affinity mode. Ligands with low molecular mass have been shown to be the easiest to immobilize. Nowadays, ligands with low molecular mass are often designed by combinatorial chemical techniques. In addition, many applications have been described where ligands with high molecular mass, such as Proteins A and G, antibodies, lectins and receptors are used.

The immobilization of an enzyme on the monolithic support creates a flow-through reactor. Small proteins, such as carbonic anhydrase, can be directly immobilized on the support. However, in the case of large molecules, the active center of the enzyme is no longer accessible at all or only to a limited degree. An improvement can be achieved by introducing a spacer, which allows maximum enzymatic conversion. Fast conversion of substrates with high molecular mass has been investigated with immobilized trypsin. It was shown that in case of high-molecular-mass substrates, the conversion rate depends very much on the flow-rate. Most applications described have been performed on an analytical or semi-preparative scale. However, the technical problems of up-scaling are close to being definitely solved, enabling enzymatic conversion on a preparative scale in the future.

Purchase full article

Full view

H. Podgornik, M. Stegu, A. Podgornik, A. Perdih

FEMS Microbiology Letters 201 (2001) 265-269

High initial Mn(II) concentration results in accumulation of a Mn(III) tartrate complex in the growth medium of Phanerochaete chrysosporium. Since Mn(III) is the major oxidant in ligninolysis by manganese peroxidase, the role of accumulated complex should not be neglected when degradation experiments by a crude culture filtrate are performed. To study the Mn(III) complex oxidative potential it was isolated by absorption to polyamide followed by desorption with an alkaline methanol solution. High performance liquid chromatography analysis and atomic absorption spectroscopy confirmed that the isolate was Mn(III) tartrate. Oxidation of 2,2′-azino-bis(3-ethylbenz-thiazoline-6-sulfonate) was used for testing the temperature and pH stability of the isolate that also intensively oxidized 2,6-dimethoxyphenol. In comparison with the non-isolated complex in the culture filtrate, the isolate showed increased temperature and pH stability. The oxidative potential of the isolated Mn(III) tartrate was additionally tested by decolorization of the synthetic dye Indigo carmine.

Read full article

Full view

2000

K. Amatschek, R. Necina, R. Hahn, E. Schallaun, H. Schwinn, D. Josić, A. Jungbauer

Journal of Separation science, 23 (2000) 47-58

FVIII is a very complex molecule of great therapeutic significance. It is purified by a sequence of chromatographic steps including immunoaffinity chromatography. A peptide affinity chromatography method has been developed using peptides derived from a combinatorial library. Spot technology using cellulose sheets has been applied for this purpose. The dual positional scanning strategy was used for identification of the amino acids in random positions. Approximately 5000 possible candidates found in the first screening round were reduced to a panel of 36. Six candidates have been selected empirically. Five peptides seem to be directed against the light chain of FVIII, one peptide seems to be directed against the heavy chain. The peptides have been immobilized on conventional beaded material and CIM polymethacrylate monoliths. Much better performance with respect to capacity and selectivity has been observed with the monolithic material. Exposure of the ligand and its ensuing accessibility are responsible for these properties.

Purchase full article

Full view

L. G. Berruex, R. Freitag, T. B. Tennikova

Journal of Pharmaceutical and Biomedical Analysis 24 (2000) 95–104

A novel biochromatographic principle is introduced taking the quantitative analysis of affinity interactions between antibodies and immobilized group specific ligands (protein A, G, and L) as example. The name high performance monolith affinity chromatography (HPMAC) is proposed for this technique. HPMAC uses rigid, macroporous monoliths, so-called convective interaction media (CIM™)-disks, as stationary phase. An optimized procedure is described for the covalent immobilization of the group specific affinity ligands to such disks. The binding of polyclonal bovine IgG and a recombinant human antibody (type IgG1-κ) to all affinity disks is discussed. An essential feature of HPMAC is its compatibility to unusually high mobile phase flow rates (>4 ml/min). Chromatographic experiments are thus completed within seconds without significant loss in binding capacity and retentive power. This makes HPMAC a promising tool for applications in fast process monitoring or screening. As an example for the former, the direct quantitative isolation of recombinant antibodies from serum-free culture supernatant is demonstrated.

Purchase full article

Full view

L. G. Berruex, R. Freitag, T. B. Tennikova

Journal of Pharmaceutical and Biomedical Analysis 24 (2000) 95–104

A novel biochromatographic principle is introduced taking the quantitative analysis of affinity interactions between antibodies and immobilized group specific ligands (protein A, G, and L) as example. The name high performance monolith affinity chromatography (HPMAC) is proposed for this technique. HPMAC uses rigid, macroporous monoliths, so-called convective interaction media (CIM™)-disks, as stationary phase. An optimized procedure is described for the covalent immobilization of the group specific affinity ligands to such disks. The binding of polyclonal bovine IgG and a recombinant human antibody (type IgG1-κ) to all affinity disks is discussed. An essential feature of HPMAC is its compatibility to unusually high mobile phase flow rates (>4 ml/min). Chromatographic experiments are thus completed within seconds without significant loss in binding capacity and retentive power. This makes HPMAC a promising tool for applications in fast process monitoring or screening. As an example for the former, the direct quantitative isolation of recombinant antibodies from serum-free culture supernatant is demonstrated.

Purchase full article

Full view

M. Vodopivec, M. Berovič, J. Jančar, A. Podgornik, A. Štrancar

Analytica Chimica Acta 407 (2000) 105-110

A new polymeric macroporous material, Convective Interaction Media (CIM) was applied as a support for glucose oxidase (GOD) immobilisation. CIM epoxy disks with the immobilised enzyme were integrated as an enzyme reactor in a flow injection analysis (FIA) system and applied to on-line monitoring of glucose during cultivation of Saccharomyces cerevisiae and citric acid production by Aspergillus niger. The developed CIM GOD disk–FIA system exhibited good signal reproducibility and satisfactory long-term stability with a linear response in the range 10–200 mg l-1. The CIM disk applied as an enzyme reactor proved to be a successful replacement for conventionally used packed-bed columns and as such it was well suited for on-line monitoring of bioprocesses.

Purchase full article

Full view

1999

H. Podgornik, A. Podgornik, A. Perdih

Analytical Biochemistry 272, 43–47 (1999)

The HPLC separation of lignin peroxidase isoenzymes using Convective Interaction Media disks containing quaternary amine and diethylaminoethyl ion-exchange active groups is proposed. In contrast to standard HPLC procedures the separation can be performed within a few minutes without considerably affecting the separation resolution. The method is reproducible and gives a linear response of integrated peak area to protein concentration for all measured isoenzymes. The separation resolution is retained unchanged by applying crude culture filtrate instead of a sample previously frozen and dialyzed. The optimized method might therefore be used for on-line monitoring of lignin peroxidase isoenzyme composition during fermentation. On the other hand, the proposed method is comparable in time to the original method of lignin peroxidase activity measurement (proposed by Tien and Kirk), providing additionally the isoenzyme composition.

Purchase full article

Full view