On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2013

A. Steyer, I. Gutierrez-Aguire, M. Kolenc, S. Koren, D. Kutnjak, M. Pokorn, M. Poljšak-Prijatelj, N. Rački, M. Ravnikar, M. Sagadin, A. Fratnik Steyer, N. Toplak

Journal of Clinical Microbiology, November 2013

Mammalian orthoreoviruses (MRV) are known to cause mild enteric and respiratory infections in humans. They are widespread and infect a broad spectrum of mammals. We report here the first case of MRV detected in a child with acute gastroenteritis, which showed the highest similarity to MRV reported recently in European bats. Stool sample examination of the child was negative for most common viral and bacterial pathogens. Reovirus particles were identified by electron microscopic examination of both stool suspension and cell culture supernatant. The whole genome sequence was obtained with the Ion Torrent next generation sequencing platform. Prior to sequencing, stool sample suspension and cell culture supernatant were pre-treated with nucleases and/or the convective interaction media (CIM) monolithic chromatographic method to purify and concentrate the target viral nucleic acid. Whole genome sequence analysis revealed that the Slovenian SI-MRV01 isolate was most similar to MRV found in bat in Germany. High similarity was shared in all genome segments, with nucleotide and amino acid identities between 93.8-99.0% and 98.4-99.7%, respectively. It was shown that CIM monolithic chromatography alone is an efficient method for enriching the sample in viral particles before nucleic acid isolation and next generation sequencing application.

Purchase full article

Full view

A. Ghanem, R. Healey, F. G. Adly

Analytica Chimica Acta 760 (2013) 1-15

Abstract

Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cellmediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.

Purchase full article

Full view

A. Romanovskaya, L. P. Sarina, D. H. Bamford, M. M. Poranen

Journal of Chromatography A (2013)

Recent advances in the field of RNA interference and new cost-effective approaches for large-scale double-stranded RNA (dsRNA) synthesis have fuelled the demand for robust high-performance purification techniques suitable for dsRNA molecules of various lengths. To address this issue, we developed an improved dsRNA purification method based on anion exchange chromatography utilizing convective interaction media (CIM) monolithic columns. To evaluate column performance we synthesized a selection of dsRNA molecules (58–1810 bp) in a one-step enzymatic reaction involving bacteriophage T7 DNA-dependent RNA polymerase and phi6 RNA-dependent RNA polymerase. In addition, small interfering RNAs (siRNAs) of 25–27 bp were generated by Dicer digestion of the genomic dsRNA of bacteriophage phi6. We demonstrated that linearly scalable CIM monolithic quaternary amine (QA) columns can be used as a fast and superior alternative to standard purification methods (e.g. LiCl precipitation) to obtain highly pure dsRNA preparations. The impurities following Dicer treatment were quickly and efficiently removed with the QA CIM monolithic column, yielding siRNA molecules of high purity suitable for potential therapeutic applications. Moreover, baseline separation of dsRNA molecules up to 1 kb in non-denaturing conditions was achieved.

Purchase full article

Full view

2012

H. M. Oksanen, A. Domanska, D. H. Bamford
Virology Volume 434, Issue 2, 20 December 2012

We report anion exchange chromatographic purification method powerful for preparation of virus particles with ultra pure quality. The technology is based on large pore size monolithic anion exchangers, quaternary amine (QA) and diethylaminoethyl (DEAE). These were applied to membrane-containing icosahedral bacteriophage PRD1, which bound specifically to both matrices. Virus particles eluted from the columns retained the ir infectivity, and were homogenous with high specific infectivity. The yields of infectious particles were up to 80%. Purified particles were recovered at high concentrations, approximately 5mg/ml, sufficient for virological, biochemical and structural analyses. We also tested the applicability of the monolithic anion exchange purification on a filamentous bacteriophage phi 05_2302. Monolithic ion exchange chromatography is easily scalable and can be combined with other preparative virus purification methods.

 Purchase full article

Full view

J. Subotič, K. Koruza, B. Gabor, M. Peterka, M. Barut, J. Kos, J. Brzin

Affinity Chromatography, Dr. Sameh Magdeldin (Ed.), ISBN: 978-953-51-0325-7, InTech

Proteolytic enzymes (also known as proteases, proteinases or peptidases) offer a wide range of applications. They are routinely used in detergent, leather, food and pharmaceutical industries, as well as in medical and basic research. Therefore, effective isolation procedures are of great importance. The chapter describes the use of recently discovered protease inhibitors from basidiomycetes as affinity chromatography ligands for isolating proteases. Affinity columns with serine and cysteine protease inhibitors immobilized to the natural polymer Sepharose have been prepared, the chromatography procedure optimized and used for isolating proteases from various bacterial, plant and animal sources. The cysteine protease inhibitor macrocypin showed superior characteristics as a ligand, so was selected for immobilization to CIM (Convective Interaction Media) monolithic disks. Different immobilization chemistries and process conditions were optimized to determine the best conditions for high capacity and selectivity. A very effective method for isolating cysteine proteases was developed using affinity chromatography with the fungal cysteine protease inhibitor macrocypin immobilized to a CIM monolithic disk.

Read full article

Full view

T. Koho, T. Mantyla, P. Laurinmaki, L. Huhti, S. J. Butcher, T. Vesikari, M. S. Kulomaa, V. P. Hytonen

Journal of Virological Methods 181 (2012) 6-11

Recombinant expression of the norovirus capsid protein VP1 leads to self-assembly of non-infectious virus-like particles (VLPs), which are recognized as promising vaccine candidates against norovirus infections. To overcome the scalability issues connected to the ultracentrifugation-based purification strategies used in previous studies, an anion exchange-based purification method for norovirus VLPs was developed in this study. The method consists of precipitation by polyethylene glycol (PEG) and a single anion exchange chromatography step for purifying baculovirus-expressed GII.4 norovirus VLPs, which can be performed within one day. High product purity was obtained using chromatography. The purified material also contained fully assembled monodispersed VLPs, which were recognized by human sera containing polyclonal antibodies against norovirus GII.4.

Purchase full article

Full view

M. Rupar, M. Ravnikar, M. Tušek-Žnidarič, P. Kramberger, L. Glais, I. Gutiérrez-Aguirre

Journal of Chromatography A, 1272 (2013) 33-40(2013) 33-40

Obtaining pure virus suspensions is an essential step in many applications, such as vaccine production, antibody production, sample preparation for procedures requiring enrichment in viruses and other in vitro characterizations. Purification procedures usually consist of complex, long lasting and tedious protocols involving several ultracentrifugation steps. Such complexity is particularly evident in the case of plant viruses, where the virus needs to be isolated from the complex plant tissue matrix. Convective Interaction Media (CIM) monoliths are chromatographic supports that have been successfully utilized for the purification of large bio-molecules such as viruses, virus like particles and plasmids from various matrixes. In this study a CIM monolith based procedure was developed for the fast purification from plant tissue of the filamentous Potato virus Y (PVY) (virion size, 740 nm × 11 nm), which is one of the most important plant viruses causing great economical losses in potato production. Different mobile phases, chemistries and sample preparation strategies were tested. The presence of the virus in the chromatographic fraction was monitored with viral RNA quantification (RT-qPCR), viral protein purity estimation (SDS-PAGE) and viral particle integrity observation (transmission electron microscopy). The optimized procedure involves initial clarification steps, followed by chromatography using CIM quaternary amine (QA) monolithic disk column. In comparison to classical purification procedure involving ultracentrifugation through sucrose and caesium chloride, the developed CIM-QA purification achieved comparable yield, concentration and purity. Plant nucleic acids were successfully removed. Purification showed good reproducibility and moreover it reduced the purification time from four working days required for classic purification to a day and a half. This is the first study where a filamentous virus was purified using CIM monolithic supports. The advantages of this new purification procedure make it an attractive method in serological diagnostic tool production, which requires purified viruses for the immunization step. Moreover, the outcome of this study could serve as starting point for the improvement of the purification methods of other important filamentous viruses.

Purchase full article

Call

Send SMS

Add to Skype

You'll need Skype CreditFree via Skype

Full view

M. M. Segura, M. Puig, M. Monfar, M. Chillon

HUMAN GENE THERAPY METHODS 23:182–197 (June 2012)

Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ul- tracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarifi- cation and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contami- nating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58– 69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks.

Read full article

Full view

N. Mehle, M. Ravnikar

Water research 46 (2012) 4902 - 4917

The presence of plant viruses outside their plant host or insect vectors has not been studied intensively. This is due, in part, to the lack of effective detection methods that would enable their detection in difficult matrixes and in low titres, and support the search for unknown viruses. Recently, new and sensitive methods for detecting viruses have resulted in a deeper insight into plant virus movement through, and transmission between, plants. In this review, we have focused on plant viruses found in environmental waters and their detection. Infectious plant pathogenic viruses from at least 7 different genera have been found in aqueous environment. The majority of the plant pathogenic viruses so far recovered from environmental waters are very stable, they can infect plants via the roots without the aid of a vector and often have a wide host range. The release of such viruses from plants can lead to their dissemination in streams, lakes, and rivers, thereby ensuring the long-distance spread of viruses that otherwise, under natural conditions, would remain restricted to limited areas.

The possible sources and survival of plant viruses in waters are therefore discussed. Due to the widespread use of hydroponic systems and intensive irrigation in horticulture, the review is focused on the possibility and importance of spreading viral infection by water, together with measures for preventing the spread of viruses. The development of new methods for detecting multiple plant viruses at the same time, like microarrays or new generation sequencing, will facilitate the monitoring of environmental waters and waters used for irrigation and in hydroponic systems. It is reasonable to expect that the list of plant viruses found in waters will thereby be expanded considerably. This will emphasize the need for further studies to determine the biological significance of water-mediated transport.

Purchase full article

Full view

V. Bandeira, C. Peixoto, A. F. Rodrigues, P. E. Cruz, P. M. Alves, A. S. Coroadinha, M. J. T. Carrondo

Human Gene Therapy Methods 23:1-9 (August 2012)

Lentiviral vectors (LVs) hold great potential as gene delivery vehicles. However, the manufacturing and purification of these vectors still present major challenges, mainly because of the low stability of the virus, essentially due to the fragility of the membrane envelope. The main goal of this work was the establishment of a fast, scalable, and robust downstream protocol for LVs, combining microfiltration, anion-exchange, and ultrafiltration membrane technologies toward maximization of infectious LVs recovery. CIM® (Convective Interaction Media) monolithic columns with diethylaminoethanol (DEAE) anion exchangers were used for the purification of clarified LV supernatants, allowing infectious vector recoveries of 80%, which is 10% higher than the values currently reported in the literature. These recoveries, combined with the results obtained after optimization of the remaining downstream purification steps, resulted in overall infectious LV yields of 36%. Moreover, the inclusion of a Benzonase step allowed a removal of approximately 99% of DNA impurities. The entire downstream processing strategy herein described was conceived based on disposable and easily scalable technologies. Overall, CIM DEAE columns have shown to be a good alternative for the purification of LVs, since they allow faster processing of the viral bulks and enhanced preservation of virus biological activity, consequently, increasing infectious vector recoveries.

Read full article

Full view

E. M. Adriaenssens et al.

SciVerse ScienceDirect, Virology, 2012

The use of anion-exchange chromatography was investigated as an alternative method to concentrate and purify bacterial viruses, and parameters for different bacteriophages were compared. Chromatography was performed with Convective Interactive Media® monoliths, with three different volumes and two matrix chemistries. Eleven morphologically distinct phages were tested, infecting five different bacterial species. For each of the phages tested, a protocol was optimized, including the choice of column chemistry, loading, buffer and elution conditions. The capacity and recovery of the phages on the columns varied considerably between phages. We conclude that anion-exchange chromatography with monoliths is a valid alternative to the more traditional CsCl purification, has upscaling advantages, but it requires more extensive optimization.

Read full article

Full view

M. Lock, M. R. Alvira, J. M. Wilson
HUMAN GENE THERAPY METHODS: Part B 23:56-64 (February 2012)

Advances in adeno-associated virus (AAV)-mediated gene therapy have brought the possibility of commercial manufacturing of AAV vectors one step closer. To realize this prospect, a parallel effort with the goal of everincreasing sophistication for AAV vector production technology and supporting assays will be required. Among the important release assays for a clinical gene therapy product, those monitoring potentially hazardous contaminants are most critical for patient safety. A prominent contaminant in many AAV vector preparations is vector particles lacking a genome, which can substantially increase the dose of AAV capsid proteins and lead to possible unwanted immunological consequences. Current methods to determine empty particle content suffer from inconsistency, are adversely affected by contaminants, or are not applicable to all serotypes. Here we describe the development of an ion-exchange chromatography-based assay that permits the rapid separation and relative quantification of AAV8 empty and full vector particles through the application of shallow gradients and a strong anion-exchange monolith chromatography medium.

Purchase full article

Full view

J. Ruščić, I. Gutierrez-Aguirre, L. Urbas, P. Kramberger, N. Mehle, D. Škorić, M. Barut, M. Ravnikar, M. Krajačić

Journal of Chromatography A, 1274 (2013) 129-136

Potato spindle tuber viroid (PSTVd) is the causal agent of a number of agriculturally important diseases. It is a single-stranded, circular and unencapsidated RNA molecule with only 356–360 nucleotides and no coding capacity. Because of its peculiar structural features, it is very stable ex vivo and it is easily transmitted mechanically by contaminated hands, tools, machinery, etc. In this work, we describe the development and optimization of a method for concentrating PSTVd using Convective Interaction Media (CIM) monolithic columns. The ion-exchange chromatography on diethylamine (DEAE) monolithic analytical column (CIMac DEAE-0.1 mL) resulted in up to 30% PSTVd recovery whilst the hydrophobic interaction chromatography on C4 monolithic analytical column (CIMac C4-0.1 mL) improved it up to 60%. This was due to the fact that the binding of the viroid to the C4 matrix was less strong than to the highly charged anion-exchange matrix and could be easier and more completely eluted under the applied chromatographic conditions. Based on these preliminary results, a C4 HLD-1 (High Ligand Density) 1 mL monolithic tube column was selected for further experiments. One-litre-water samples were mixed with different viroid quantities and loaded onto the column. By using reverse transcription quantitative polymerase chain reaction (RT-qPCR), the viroid RNA was quantified in the elution fraction (≈5 mL) indicating that 70% of the viroid was recovered and concentrated by at least two orders of magnitude. This approach will be helpful in screening irrigation waters and/or hydroponic systems’ nutrient solutions for the presence of even extremely low concentrations of PSTVd.

Purchase full article

Full view

2011

F. Smrekar, M. Ciringer, J. Jančar, P. Raspor, A. Štrancar, A. Podgornik

Journal of Separation Science 2011, 34, 2152-2158

A process for manufacturing large quantities of lytic bacteriophages was developed. Determination of cultivation termination was found to be essential to achieve high phage quantity and purity. When optimal cultivation termination is missed, phage fraction was found to be highly contaminated with deoxyribonucleic acid released from Escherichia coli cells. Besides, an already established method for monitoring of phage cultivation based on optical density, where its peak indicates point when maximal phage titer is achieved, a new indirect chromatographic method using methacrylate monoliths is proposed for on-line estimation of phage titer. It is based on the measurement of released E. coli deoxyribonucleic acid and shows high correlation with phage titer obtained from plaque assay. Its main advantage is that the information is obtained within few minutes. In addition, the same method can also be used to determine purity of a final phage fraction. Two strategies to obtain highly pure phage fractions are proposed: an immediate purification of phage lysate using monolithic columns or an addition of EDTA before chromatographic purification. The developed protocol was shown to give phage purity above 90% and it is completed within one working day including cultivation and phage titer in the final formulation using developed chromatographic method.

Purchase full article

Full view

C. Burden, J. Jin, A. Podgornik, D. G. Bracewell

Journal of Chromatography B, 880 (2012) 82- 89

Monoliths are an alternative stationary phase format to conventional particle based media for large biomolecules. Conventional resins suffer from limited capacities and flow rates when used for viruses, virus-like particles (VLP) and other nanoplex materials. The monolith structure provides a more open pore structure to improve accessibility for these materials and better mass transport from convective flow and reduced pressure drops. To examine the performance of this format for bioprocessing we selected the challenging capture of a VLP from clarified yeast homogenate. Using a recombinant Saccharomyces cerevisiae host it was found hydrophobic interaction based separation using a hydroxyl derivatised monolith had the best performance. The monolith was then compared to a known beaded resin method, where the dynamic binding capacity was shown to be three-fold superior for the monolith with equivalent 90% recovery of the VLP. To understand the impact of the crude feed material confocal microscopy was used to visualise lipid contaminants, deriving from the homogenised yeast. It was seen that the lipid formed a layer on top of the column, even after regeneration of the column with isopropanol, resulting in increasing pressure drops with the number of operational cycles. Removal of the lipid pre-column significantly reduces the amount and rate of this fouling process. Using Amberlite/XAD-4 beads around 70% of the lipid was removed, with a loss of VLP around 20%. Applying a reduced lipid feed versus an untreated feed further increased the dynamic binding capacity of the monolith from 0.11 mg/mL column to 0.25 mg/mL column.

Read full article

Full view

L. Urbas, B. Lah Jarc, M. Barut, M. Zochowska, J. Chroboczek

Journal of Chromatography A, 1218 (2011) 2451-2459

Adenovirus type 3 dodecahedric virus-like particles (Ad3 VLP) are an interesting delivery vector. They penetrate animal cells in culture very efficiently and up to 300,000 Ad3 VLP can be observed in one cell. The purification of such particles usually consists of several steps. In these work we describe the method development and optimization for the purification of Ad3 VLP using the Convective Interaction Media analytical columns (CIMac). Results obtained with the CIMac were compared to the already established two-step purification protocol for Ad3 VLP based on sucrose density gradient ultracentifugation and the Q-Sepharose ion-exchange column. Pure, concentrated and bioactive VLP were obtained and characterized by several analytical methods. The recovery of the Ad3 VLP was more than 50% and the purified fraction was almost completely depleted of DNA; less than 1% of DNA was present. The purification protocol was shortened from five days to one day and remarkably high penetration efficacy of the CIMac-purified vector was retained. Additionally, CIMac QA analytical column has proven to be applicable for the final and in-process control of various Ad3 VLP samples.

Purchase full article

Full view

M. J. Shin, L. Tan, M. H. Jeong, J.-H. Kim, W.-S. Choe

Journal of Chromatography A, 1218 (2011) 5273-5278

Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl2-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification.

Purchase full article

Full view

2010

F. Smrekar, A. Podgornik, M. Ciringer, S. Kontrec, P. Raspor, A. Štrancar, M. Peterka

Vaccine 28 (2010) 2039–2045

Plasmid DNA (pDNA) used in vaccination and gene therapy has to be highly pure and homogenous, which point out necessity to develop efficient, reproducible and scalable downstream process. Convective Interaction Media (CIM) monolithic chromatographic supports being designed for purification of large molecules and nanoparticles seem to be a matrix of choice for pDNA purification. In present work we describe a pDNA purification process designed on two different CIM monolithic columns, based on anion-exchange (AEX) chromatography and hydrophobic interaction chromatography (HIC) chemistry. HIC monolith enabled separation of supercoiled (sc) pDNA from open circular (oc) pDNA, genomic DNA (gDNA) and endotoxins regardless to flow rates in the range at least up to 380 cm/h. Dynamic binding capacity of new HIC monolith is up to 4 mg of pDNA per milliliter of support. Combination of both chromatographic steps using optimized CaCl2 precipitation enabled production of pure pDNA, satisfying all regulatory requirements. Process was found to be reproducible, scalable, and exhibits high productivity. In addition, in-line monitoring of pDNA purification process is shown, using CIM DEAE disk monolithic columns.

Purchase full article

Full view

N. Lendero Krajnc, F. Smrekar, A. Štrancar, A. Podgornik

Journal of Chromatography A, 1218 (2011) 2413-2424

The objective of this study was to investigate the behavior of large plasmids on the monolithic columns under binding and nonbinding conditions. The pressure drop measurements under nonbinding conditions demonstrated that the flow velocities under which plasmid passing monolith became hindered by the monolithic pore structure depended on the plasmid size as well as on the average monolith pore size; however, they were all very high exceeding the values encountered when applying CIM monolithic columns at their maximal flow rate. The impact of the ligand density and the salt concentration in loading buffer on binding capacity of the monolith for different sized plasmids was examined. For all plasmids the increase of dynamic binding capacity with the increase of salt concentration in the loading solution was observed reaching maximum of 7.1 mg/mL at 0.4 M NaCl for 21 kbp, 12.0 mg/mL at 0.4 M NaCl for 39.4 kbp and 8.4 mg/mL at 0.5 M NaCl for 62.1 kbp. Analysis of the pressure drop data measured on the monolithic column during plasmid loading revealed different patterns of plasmid binding to the surface, showing “car-parking problem” phenomena under certain conditions. In addition, layer thickness of adsorbed plasmid was estimated and at maximal dynamic binding capacity it matched calculated plasmid radius of gyration. Finally, it was found that the adsorbed plasmid layer acts similarly as the grafted layer responding to changes in solution's ionic strength as well as mobile phase flow rate and that the density of plasmid layer depends on the plasmid size and also loading conditions.

Purchase full article

Full view

H. P. Lesch, A. Laitinen, C. Peixoto, T. Vicente, K.-E. Makkonen, L. Laitinen, J. T. Pikkarainen

Gene Therapy advance online publication, 20 January 2011

Lentivirus can be engineered to be a highly potent vector for gene therapy applications. However, generation of clinical grade vectors in enough quantities for therapeutic use is still troublesome and limits the preclinical and clinical experiments. As a first step to solve this unmet need we recently introduced a baculovirus-based production system for lentiviral vector (LV) production using adherent cells. Herein, we have adapted and optimized the production of these vectors to a suspension cell culture system using recombinant baculoviruses delivering all elements required for a safe latest generation LV preparation. High-titer LV stocks were achieved in 293T cells grown in suspension. Produced viruses were accurately characterized and the functionality was also tested in vivo. Produced viruses were compared with viruses produced by calcium phosphate transfection method in adherent cells and polyethylenimine transfection method in suspension cells. Furthermore, a scalable and cost-effective capture purification step was developed based on a diethylaminoethyl monolithic column capable of removing most of the baculoviruses from the LV pool with 65% recovery.

Purchase full article

Full view