On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2012

K. Sushma, C. J. Bilgimol, M. A. Vijayalakshmi, P. K. Satheeshkumar

Journal of Chromatography B, 891 - 892 (2012) 90 - 93(2012) 90 - 93

Anti TNF-α molecules are important as therapeutic agents for many of the autoimmune diseases in chronic stage. Here we report the expression and purification of a recombinant single chain variable fragment (ScFv) specific to TNF-α from inclusion bodies. In contrast to the conventional on column refolding using the soft gel supports, an efficient methodology using monolithic matrix has been employed. Nickel (II) coupled to convective interaction media (CIM) support was utilized for this purpose with 6 M guanidine hydrochloride (GuHCl) as the chaotropic agent. The protein purified after solubilization and refolding proved to be biologically active with an IC50.

Purchase full article

Full view

M. Srajer Gajdosik, J. Clifton, D. Josić,

Journal of Chromatography A, 1239 (2012) 1- 9

Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed.

Purchase full article

Full view

A. Albreht, I. Vovk

Journal of Chromatography A, 1227 (2012) 210-218

The separation and isolation of major whey proteins is already extensively covered in the literature although no study has been published in which monolithic columns were used. In our research we present, for the first time, the use of short convective interaction media (CIM) monolithic columns for the separation of all major whey proteins and isolation of β-lactoglobulin variant A and B (β-LgA and β-LgB) from a commercial product whey isolate (WI). Although our primary interest was directed towards finding a proper monolithic column and chromatographic conditions for the purification and isolation of β-LgA and β-LgB, three additional analytical LC methods, each having its own potential application target, were also developed in the course of our research. On the monolithic diethylaminoethyl convective interaction media analytical column (CIMac DEAE), the separation of major whey proteins was achieved by gradually lowering the pH of the mobile phase. The ever-so-hard obtainable linear external pH gradient was very linear in the range of pH 5.5–3 and the developed ion-exchange (IE) high-performance liquid chromatographic (HPLC) method was amenable to mass spectrometry (MS). A very fast baseline separation, with UV detection, of all major whey proteins was achieved on a prototype CIMac reversed-phase styrene-divinylbenzene (RP-SDVB) monolithic column in only 4 min and the performance of this column proved superior in comparison with the packed particle POROS perfusion column. The developed RP-HPLC–MS method is fast and, due to the MS detector, can offer low limits of detection and quantitation. Finally, in order to fulfill our primary interest, a scale-up method was developed, using a prototype 8 mL analogue of the CIMac RP-SDVB column, for the isolation of native and chemically unmodified β-LgA and β-LgB from WI with purities higher than 90% and 81%, respectively. The proteins were to be used in further protein–ligand binding studies. The developed methods excel in speed of the analysis, sensitivity, resolution, and simplicity. Thus, it is shown for the first time that short monolithic columns are applicable to the separation and isolation of major whey proteins and that their use has some obvious benefits.

Purchase full article

Full view

P. Gagnon

Journal of Chromatography A, 1221 (2012) 57-70(2012) 57-70

This article reviews technology trends in antibody purification. Section 1 discusses non-chromatography methods, including precipitation, liquid–liquid extraction, and high performance tangential flow filtration. The second addresses chromatography methods. It begins with discussion of fluidized and fixed bed formats. It continues with stationary phase architecture: diffusive particles, perfusive particles, membranes and monoliths. The remainder of the section reviews recent innovations in size exclusion, anion exchange, cation exchange, hydrophobic interaction, immobilized metal affinity, mixed-mode, and bioaffinity chromatography. Section 3 addresses an emerging trend of formulating process buffers to prevent or correct anomalies in the antibodies being purified. Methods are discussed for preventing aggregate formation, dissociating antibody-contaminant complexes, restoring native antibody from aggregates, and conserving or restoring native disulfide pairing.

Purchase full article

Full view

T. Koho, T. Mantyla, P. Laurinmaki, L. Huhti, S. J. Butcher, T. Vesikari, M. S. Kulomaa, V. P. Hytonen

Journal of Virological Methods 181 (2012) 6-11

Recombinant expression of the norovirus capsid protein VP1 leads to self-assembly of non-infectious virus-like particles (VLPs), which are recognized as promising vaccine candidates against norovirus infections. To overcome the scalability issues connected to the ultracentrifugation-based purification strategies used in previous studies, an anion exchange-based purification method for norovirus VLPs was developed in this study. The method consists of precipitation by polyethylene glycol (PEG) and a single anion exchange chromatography step for purifying baculovirus-expressed GII.4 norovirus VLPs, which can be performed within one day. High product purity was obtained using chromatography. The purified material also contained fully assembled monodispersed VLPs, which were recognized by human sera containing polyclonal antibodies against norovirus GII.4.

Purchase full article

Full view

M. Rupar, M. Ravnikar, M. Tušek-Žnidarič, P. Kramberger, L. Glais, I. Gutiérrez-Aguirre

Journal of Chromatography A, 1272 (2013) 33-40(2013) 33-40

Obtaining pure virus suspensions is an essential step in many applications, such as vaccine production, antibody production, sample preparation for procedures requiring enrichment in viruses and other in vitro characterizations. Purification procedures usually consist of complex, long lasting and tedious protocols involving several ultracentrifugation steps. Such complexity is particularly evident in the case of plant viruses, where the virus needs to be isolated from the complex plant tissue matrix. Convective Interaction Media (CIM) monoliths are chromatographic supports that have been successfully utilized for the purification of large bio-molecules such as viruses, virus like particles and plasmids from various matrixes. In this study a CIM monolith based procedure was developed for the fast purification from plant tissue of the filamentous Potato virus Y (PVY) (virion size, 740 nm × 11 nm), which is one of the most important plant viruses causing great economical losses in potato production. Different mobile phases, chemistries and sample preparation strategies were tested. The presence of the virus in the chromatographic fraction was monitored with viral RNA quantification (RT-qPCR), viral protein purity estimation (SDS-PAGE) and viral particle integrity observation (transmission electron microscopy). The optimized procedure involves initial clarification steps, followed by chromatography using CIM quaternary amine (QA) monolithic disk column. In comparison to classical purification procedure involving ultracentrifugation through sucrose and caesium chloride, the developed CIM-QA purification achieved comparable yield, concentration and purity. Plant nucleic acids were successfully removed. Purification showed good reproducibility and moreover it reduced the purification time from four working days required for classic purification to a day and a half. This is the first study where a filamentous virus was purified using CIM monolithic supports. The advantages of this new purification procedure make it an attractive method in serological diagnostic tool production, which requires purified viruses for the immunization step. Moreover, the outcome of this study could serve as starting point for the improvement of the purification methods of other important filamentous viruses.

Purchase full article

Call

Send SMS

Add to Skype

You'll need Skype CreditFree via Skype

Full view

M. M. Segura, M. Puig, M. Monfar, M. Chillon

HUMAN GENE THERAPY METHODS 23:182–197 (June 2012)

Canine adenovirus vectors (CAV2) are currently being evaluated for gene therapy, oncolytic virotherapy, and as vectors for recombinant vaccines. Despite the need for increasing volumes of purified CAV2 preparations for preclinical and clinical testing, their purification still relies on the use of conventional, scale-limited CsCl ul- tracentrifugation techniques. A complete downstream processing strategy for CAV2 vectors based on membrane filtration and chromatography is reported here. Microfiltration and ultra/diafiltration are selected for clarifi- cation and concentration of crude viral stocks containing both intracellular and extracellular CAV2 particles. A DNase digestion step is introduced between ultrafiltration and diafiltration operations. At these early stages, concentration of vector stocks with good recovery of viral particles (above 80%) and removal of a substantial amount of protein and nucleic acid contaminants is achieved. The ability of various chromatography techniques to isolate CAV2 particles was evaluated. Hydrophobic interaction chromatography using a Fractogel propyl tentacle resin was selected as a first chromatography step, because it allows removal of the bulk of contami- nating proteins with high CAV2 yields (88%). An anion-exchange chromatography step using monolithic supports is further introduced to remove the remaining contaminants with good recovery of CAV2 particles (58– 69%). The main CAV2 viral structural components are visualized in purified preparations by electrophoresis analyses. Purified vector stocks contained intact icosahedral viral particles, low contamination with empty viral capsids (10%), and an acceptable total-to-infectious particle ratio (below 30). The downstream processing strategy that was developed allows preparation of large volumes of high-quality CAV2 stocks.

Read full article

Full view

N. Mehle, M. Ravnikar

Water research 46 (2012) 4902 - 4917

The presence of plant viruses outside their plant host or insect vectors has not been studied intensively. This is due, in part, to the lack of effective detection methods that would enable their detection in difficult matrixes and in low titres, and support the search for unknown viruses. Recently, new and sensitive methods for detecting viruses have resulted in a deeper insight into plant virus movement through, and transmission between, plants. In this review, we have focused on plant viruses found in environmental waters and their detection. Infectious plant pathogenic viruses from at least 7 different genera have been found in aqueous environment. The majority of the plant pathogenic viruses so far recovered from environmental waters are very stable, they can infect plants via the roots without the aid of a vector and often have a wide host range. The release of such viruses from plants can lead to their dissemination in streams, lakes, and rivers, thereby ensuring the long-distance spread of viruses that otherwise, under natural conditions, would remain restricted to limited areas.

The possible sources and survival of plant viruses in waters are therefore discussed. Due to the widespread use of hydroponic systems and intensive irrigation in horticulture, the review is focused on the possibility and importance of spreading viral infection by water, together with measures for preventing the spread of viruses. The development of new methods for detecting multiple plant viruses at the same time, like microarrays or new generation sequencing, will facilitate the monitoring of environmental waters and waters used for irrigation and in hydroponic systems. It is reasonable to expect that the list of plant viruses found in waters will thereby be expanded considerably. This will emphasize the need for further studies to determine the biological significance of water-mediated transport.

Purchase full article

Full view

V. Bandeira, C. Peixoto, A. F. Rodrigues, P. E. Cruz, P. M. Alves, A. S. Coroadinha, M. J. T. Carrondo

Human Gene Therapy Methods 23:1-9 (August 2012)

Lentiviral vectors (LVs) hold great potential as gene delivery vehicles. However, the manufacturing and purification of these vectors still present major challenges, mainly because of the low stability of the virus, essentially due to the fragility of the membrane envelope. The main goal of this work was the establishment of a fast, scalable, and robust downstream protocol for LVs, combining microfiltration, anion-exchange, and ultrafiltration membrane technologies toward maximization of infectious LVs recovery. CIM® (Convective Interaction Media) monolithic columns with diethylaminoethanol (DEAE) anion exchangers were used for the purification of clarified LV supernatants, allowing infectious vector recoveries of 80%, which is 10% higher than the values currently reported in the literature. These recoveries, combined with the results obtained after optimization of the remaining downstream purification steps, resulted in overall infectious LV yields of 36%. Moreover, the inclusion of a Benzonase step allowed a removal of approximately 99% of DNA impurities. The entire downstream processing strategy herein described was conceived based on disposable and easily scalable technologies. Overall, CIM DEAE columns have shown to be a good alternative for the purification of LVs, since they allow faster processing of the viral bulks and enhanced preservation of virus biological activity, consequently, increasing infectious vector recoveries.

Read full article

Full view

E. M. Adriaenssens et al.

SciVerse ScienceDirect, Virology, 2012

The use of anion-exchange chromatography was investigated as an alternative method to concentrate and purify bacterial viruses, and parameters for different bacteriophages were compared. Chromatography was performed with Convective Interactive Media® monoliths, with three different volumes and two matrix chemistries. Eleven morphologically distinct phages were tested, infecting five different bacterial species. For each of the phages tested, a protocol was optimized, including the choice of column chemistry, loading, buffer and elution conditions. The capacity and recovery of the phages on the columns varied considerably between phages. We conclude that anion-exchange chromatography with monoliths is a valid alternative to the more traditional CsCl purification, has upscaling advantages, but it requires more extensive optimization.

Read full article

Full view

E. S. Sinitsyna, J. G. Walter, E. G. Vlakh, F. Stahl, C. Kasper, T. B. Tennikova
Talanta 93 (2012) 139-146

Macroporous monoliths with different surface functionalization (reactive groups) were utilized as platforms for DNA analysis in microarray format. The slides based on a copolymer glycidyl methacrylate-co- ethylene dimethacrylate (GMA-EDMA) have been chosen as well known and thoroughly studied standard. In particular, this material has been used at optimization of DNA microanalytical procedure.

The concentration and pH of spotting solution, immobilization temperature and time, blocking agent and coupling reaction duration were selected as varied parameters. The efficiency of analysis performed on 3-D monolithic platforms was compared to that established for commercially available glass slides. As a practical example, a diagnostic test for detection of CFTR gene mutation was carried out. Additionally, the part of presented work was devoted to preparation of aptamer-based test-system that allowed successful and highly sensitive detection both of DNA and protein.

Purchase full article

Full view

M. Lock, M. R. Alvira, J. M. Wilson
HUMAN GENE THERAPY METHODS: Part B 23:56-64 (February 2012)

Advances in adeno-associated virus (AAV)-mediated gene therapy have brought the possibility of commercial manufacturing of AAV vectors one step closer. To realize this prospect, a parallel effort with the goal of everincreasing sophistication for AAV vector production technology and supporting assays will be required. Among the important release assays for a clinical gene therapy product, those monitoring potentially hazardous contaminants are most critical for patient safety. A prominent contaminant in many AAV vector preparations is vector particles lacking a genome, which can substantially increase the dose of AAV capsid proteins and lead to possible unwanted immunological consequences. Current methods to determine empty particle content suffer from inconsistency, are adversely affected by contaminants, or are not applicable to all serotypes. Here we describe the development of an ion-exchange chromatography-based assay that permits the rapid separation and relative quantification of AAV8 empty and full vector particles through the application of shallow gradients and a strong anion-exchange monolith chromatography medium.

Purchase full article

Full view

2011

M. Pucic, A. Knezevic, J. Vidic, B. Adamczyk, M. Novokmet, O. Polasek, O. Gornik, S. Supraha-Goreta, M. R. Wormald, I. Redzic, H. Campbell, A. Wright, N. D. Hastie, J. F. Wilson, I. Rudan, M. Wuhrer, P. M. Rudd, Dj. Josic, and G. Lauc

Mol Cell Proteomics. Oct 2011; published online Jun 8, 2011

All immunoglobulin G molecules carry N-glycans, which modulate their biological activity. Changes in N-glycosylation of IgG associate with various diseases and affect the activity of therapeutic antibodies and intravenous immunoglobulins. We have developed a novel 96-well protein G monolithic plate and used it to rapidly isolate IgG from plasma of 2298 individuals from three isolated human populations. N-glycans were released by PNGase F, labeled with 2-aminobenzamide and analyzed by hydrophilic interaction chromatography with fluorescence detection. The majority of the structural features of the IgG glycome were consistent with previous studies, but sialylation was somewhat higher than reported previously.

Sialylation was particularly prominent in core fucosylated glycans containing two galactose residues and bisecting GlcNAc where median sialylation level was nearly 80%. Very high variability between individuals was observed, approximately three times higher than in the total plasma glycome. For example, neutral IgG glycans without core fucose varied between 1.3 and 19%, a difference that significantly affects the effector functions of natural antibodies, predisposing or protecting individuals from particular diseases. Heritability of IgG glycans was generally between 30 and 50%. The individual's age was associated with a significant decrease in galactose and increase of bisecting GlcNAc, whereas other functional elements of IgG glycosylation did not change much with age. Gender was not an important predictor for any IgG glycan. An important observation is that competition between glycosyltransferases, which occurs in vitro, did not appear to be relevant in vivo, indicating that the final glycan structures are not a simple result of competing enzymatic activities, but a carefully regulated outcome designed to meet the prevailing physiological needs.

Read full article

Full view

M. R. Etzel, T. Bund

Journal of Chromatography A, 1218 (2011) 2445-2450

Proteins conjugated to neutral biopolymers are of keen interest to the food and pharmaceutical industries. Conjugated proteins are larger and more charge shielded than un-reacted proteins, making purification difficult using conventional beaded chromatographic supports because of slow mass transfer rates, weak binding, and viscous solutions. Past methods developed for pharmaceuticals are unsuitable for foods. In this work, a food-grade whey protein–dextran conjugate was purified from a feed solution also containing un-reacted protein and dextran using either a column packed with 800 mL of a beaded support that was specifically designed for purification of conjugated proteins or an 8 mL tube monolith. The monolith gave a similar dynamic binding capacity as the beaded support (4–6 g/L), at a 42-fold greater mass productivity, and 48-fold higher flow rate, albeit at somewhat lower conjugate purity. Performance of the monolith did not depend on flow rate. In conclusion, monoliths were found to be well suited for the purification of whey protein–dextran conjugates.

Purchase full article

Full view

I. Pulko, V. Smrekar, A. Podgornik, P. Krajnc

Journal of Chromatography A, 1218 (2011) 2396-2401

Approximately 25 cm × 25 cm large sheets of crosslinked highly porous poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate-co-ethylhexyl methacrylate) membranes with an average thicknesses between 285 and 565 μm were prepared by casting a high internal phase emulsion (HIPE) containing monomers onto glass substrates and subsequent polymerisation. Open cellular porous polyHIPE type membranes were obtained with large pores (cavity) sizes between 3 and 10 μm while interconnecting pores were between 1 and 3 μm. The percentage of ethylhexyl acrylate and ethyleneglycol dimethacrylate influenced the flexibility and morphology of the resulting membranes. Porous membranes were chemically modified with diethylamine to yield functionalised supports for ion exchange chromatography. Cylindrical housings were used for positioning of the membranes and allowing flow of the mobile phase. Pulse experiments were used to study the flow characteristics and a homogeneous flow through the entire area of the membrane was found. Bovine serum albumin was purified by a 8 ml column containing functional membrane in modular shape; dynamic binding capacity was measured to be as high as 45 mg/ml.

Purchase full article

Full view

C. Valasek, J. Cole, F. Hensel, P. Ye, M. A. Conner, M. E. Ultee

BioProcess International, Vol. 9, No. 11, December 2011, pp. 28–37

Immunoglobulin G (IgG) antibodies have been used to treat cancer for many years (1). Another class of antibodies—immunoglobulin M (IgM)—has been overlooked in spite of offering unique advantages that make them highly desirable as cancer therapeutics. Serving a valuable function in our innate immune system, IgM antibodies are the first to be secreted when an abnormal cell is present (2). These antibodies play a critical role in recognition and elimination of infectious particles (3,4), in removal of intracellular components, and in immunosurveillance mechanisms against malignant cells (5,6). IgMs also can bind to multiple copies of a target on a cancer cell surface. Such high avidity leads to cross-linking and more effective cell killing (7).

Read full article

Full view

P. Gagnon, F. Hensel, S. Lee, S. Zaidi

Journal of Chromatography A, 1218 (2011) 2405-2412

This study documents the presence of stable complexes between monoclonal IgM and genomic DNA in freshly harvested mammalian cell culture supernatants. 75% of the complex population elutes from size exclusion chromatography with the same retention volume as IgM. DNA comprises 24% of the complex mass, corresponding to an average of 347 base pairs per IgM molecule, distributed among fragments smaller than about 115 base pairs. Electrostatic interactions appear to provide most of the binding energy, with secondary stabilization by hydrogen bonding and metal affinity. DNA-dominant complexes are unretained by bioaffinity chromatography, while IgM-dominant complexes are retained and coelute with IgM. DNA-dominant complexes are repelled from cation exchangers, while IgM-dominant complexes are retained and partially dissociated. Partially dissociated forms elute in order of decreasing DNA content. The same pattern is observed with hydrophobic interaction chromatography. All complex compositions bind to anion exchangers and elute in order of increasing DNA content. A porous particle anion exchanger was unable to dissociate DNA from IgM. Monolithic anion exchangers, offering up to15-fold higher charge density, achieved nearly complete complex dissociation. The charge-dense monolith surface appears to outcompete IgM for the DNA. Monoliths also exhibit more than double the IgM dynamic binding capacity of the porous particle anion exchanger, apparently due to better surface accessibility and more efficient mass transfer.

Purchase full article

Full view

P. Gagnon, G. Rodriquez, S. Zaidi

Journal of Chromatography A, 1218 (2011) 2402-2404

A basic method for dissociation and fractionation of monoclonal IgG heavy and light chain is described. It employs less noxious and hazardous reagents than the classical mercaptoethanol/propionic acid process and replaces size exclusion chromatography with cation exchange on a monolith to improve productivity. Significant scope remains to refine the conditions. The method can be applied to other disulfide bonded proteins with significant affinity for cation exchangers.

Purchase full article

Full view

S. Neff, A. Jungbauer

Journal of Chromatography A, 1218 (2011) 2374-2380

We have developed a method for quantification of a specific monoclonal IgM directed toward embryonic stem cells based on a peptide affinity monolith. A peptide affinity ligand with the sequence C–C–H–Q–R–L–S–Q–R–K was obtained by epitope mapping using peptide SPOT synthesis. The peptide ligand was covalently immobilized by coupling the N-terminal cysteine to a monolithic disk that was previously modified with iodated spacer molecules. The monolithic disc was used for quantification of purified IgM and for IgM present in mammalian cell culture supernatant. We observed 17% unspecific binding of IgM to the monolithic disk and additionally a product loss in the flow through of 20%. Nevertheless, calibration curves had high correlation coefficients and inter/intra-assay variability experiments proved sufficient precision of the method. A limit of quantification of 51.69 μg/mL for purified IgM and 48.40 μg/mL for IgM in cell culture supernatant could be calculated. The binding capacity was consistent within the period of the study which included more than 200 cycles. The analysis time of less than 2 min is an advantage over existing chromatographic methods that rely on pore diffusion.

Purchase full article

Full view

A. Mönster, O. Hiller, D. Grüger, R. Blasczyk, C. Kasper

Journal of Chromatography A, 1218 (2011) 706–710

Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM®) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM® Disk with epoxy chemistry. After this, the immobilized CIM® Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM® Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap® metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

Purchase full article

Full view