On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2012

E. S. Sinitsyna, J. G. Walter, E. G. Vlakh, F. Stahl, C. Kasper, T. B. Tennikova
Talanta 93 (2012) 139-146

Macroporous monoliths with different surface functionalization (reactive groups) were utilized as platforms for DNA analysis in microarray format. The slides based on a copolymer glycidyl methacrylate-co- ethylene dimethacrylate (GMA-EDMA) have been chosen as well known and thoroughly studied standard. In particular, this material has been used at optimization of DNA microanalytical procedure.

The concentration and pH of spotting solution, immobilization temperature and time, blocking agent and coupling reaction duration were selected as varied parameters. The efficiency of analysis performed on 3-D monolithic platforms was compared to that established for commercially available glass slides. As a practical example, a diagnostic test for detection of CFTR gene mutation was carried out. Additionally, the part of presented work was devoted to preparation of aptamer-based test-system that allowed successful and highly sensitive detection both of DNA and protein.

Purchase full article

Full view

2011

E. F. Maksimova, E. G. Vlakh, T. B. Tennikova

Journal of Chromatography A, 1218 (2011) 2425-2431

A series of macroporous monolithic methacrylate-based materials was synthesized by in situ free radical UV-initiated copolymerization of functional monomers, such as glycidyl methacrylate (GMA), butyl methacrylate (BuMA), 2-aminoethyl methacrylate (AEMA), 2-hydroxyethyl methacrylate (HEMA) and 2-cyanoethyl methacrylate (CEMA), with crosslinking agent, namely, ethylene glycol dimethacrylate (EDMA). The materials obtained were applied as the stationary phases in simple and robust technique – planar chromatography (PLC). The method of separation layer fabrication representing macroporous polymer monolith bound to the specially prepared glass surface was developed and optimized. The GMA–EDMA and BuMA–EDMA matrixes were successfully applied for the separation of low molecular weight compounds (the mixture of several dies), as well as poly(vinylpyrrolidone) and polystyrene homopolymers of different molecular weights using reversed-phase mechanism. The materials based on copolymers AEMA–HEMA–EDMA and CEMA–HEMA–EDMA were used for normal-phase PLC separation of 2,4-dinitrophenyl amino acids and polystyrene standards.

Purchase full article

Full view

A. Trauner, M. H. Bennett, H. D. Williams

PLoS ONE 6(2): e16273. doi:10.1371/ journal.pone.0016273

We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology.

Purchase full article

Full view

2010

A. Čevdek, M. Franko

Analytical and Bioanalytical Chemistry 398 (2010), 555-562

This work presents a comparison of convective interaction media (CIM) and controlled pore glass (CPG) as solid supports for immunoglobulin antibodies used in bioanalytical detection of allergens in foodstuffs. A flow-injection manifold with highly sensitive thermal lens spectrometric detection was used for this purpose. Using beta-lactoglobulin, a milk allergen, as a model analyte, CIM disc supports had a higher linear range (0.2–3.5 μg L-1), better reproducibility (intra-day RSD = 1%, inter-day RSD = 10%), lower consumption of reagents, and better immunocolumn stability (1 month, over 240 injections of substrate), while providing comparable LODs (0.1 μg L-1). Application of CIM discs as solid supports in immunocolumns for allergen detection enables fast and sensitive screening of allergens in foodstuffs with sample throughput of up to eight samples per hour.

Purchase full article

Full view

2007

E. Müller, C. Mann

Journal of Chromatography A, 1144 (2007) 30-39(2007) 30-39

The electro-acoustic effects, namely the ion vibration potential (IVP) and the colloidal vibration current (CVI), colloidal vibration potential (CVP) first described by P. Debye [P. Debye, J. Chem. Phys. 1 (1933) 13], are a result of charge separation of bound or free ions at different degrees by ultrasonic waves. Today commercial instruments are available to investigate liquid homogeneous and heterogeneous systems. In the present paper the application of this technique for the characterization of salts, protein solutions and resins for biochromatography is shown and valuable information about resins can be derived in a short time. Various resins were investigated with the following results: (1) the CVI magnitude is dependent of several parameters (such as particle size distribution, volume fraction, density difference); (2) the CVI is influenced by the surface modification of the resins. Polymeric modifications decrease the value of CVI. The CVI is generally lower for high capacity resins; (3) the measurement of the electro-acoustic effects can be used to detect small changes in resins. The CVI is dependent of the amount of adsorbed protein in “native” and denatured state.

Purchase full article

Full view

2005

G. A. Platonova, T. B. Tennikova

Journal of Chromatography A, 1065 (2005) 75–81(2005) 75–81

High-performance monolithic disk affinity chromatography was applied to the investigation of formation of complexes between (1) complementary polyriboadenylic and polyribouridylic acids, e.g. poly(A) and poly(U), respectively, (2) poly(A) and synthetic polycation poly(allylamine), pAA. Polyriboadenylic acid and poly(allylamine) were immobilized on macroporous disks (CIM disks). Quantitative parameters of affinity interactions between macromolecules were established using frontal analysis at different flow rates.

Purchase full article

Full view

2004

P. N. Nesterenko, M. A. Rybalko

Mendeleev Commun. 2004

The continuous flow gradient and its effect on chromatographic parameters were investigated for the separations of inorganic anions on a monolithic porous disk with bonded hydroxyproline residues.

Purchase full article

Full view

2003

E. G. Vlakh, G. A. Platonova, G. P. Vlasov, C. Kasper, A. Tappe, G. Kretzmer, T. B. Tennikova

Journal of Chromatography A, 992 (2003) 109–119

The recently discovered serine protease called tissue plasminogen activator (t-PA) enables efficient dissolution of blood clots. t-PA works by converting plasminogen into its active form, plasmin, dissolving the major component of blood clots, fibrin. The activation of plasminogen by t-PA is enhanced by the presence of fibrin, and this is probably due to the fact that both plasminogen and t-PA possess high affinity binding sites for fibrin. Besides fibrin, fibrin monomers and some fibrin(ogen) degradation products, certain synthetic polymers (for instance, poly-l-lysines) can provide the same stimulation of plasminogen activation. The recently developed high-performance monolithic-disk chromatography, HPMDC, could become the most convenient way to study biological pairs of interest. The inherent speed of HPMDC isolation facilitates the recovery of a biologically active product, since the exposure to putative denaturing influences, such as solvents or temperature, is reduced. The better mass transfer mechanism (convection rather than diffusion) allows to consider only the biospecific reaction as time limiting. The step-by-step modeling of hypothetical affinity pairs between t-PA and different types of oligo/polymer forms of linear and branched lysine derivatives obtained both by initiated polycondensation and solid-phase peptide synthesis using HPMDC seemed to be possible and a quite useful tool. The results of quantitative evaluation of such affinity interactions were compared with those established for natural affinity counterparts to t-PA (monoclonal antibodies, plasminogen, fibrinogen). The role of steric structure of lysine ligands was observed and analyzed. The results allowing to make the practical choice of affinity systems will be used for development of fast and efficient analytical and preparative methods for the downstream processes of recombinant production of this valuable enzyme.

Purchase full article

Full view

2001

P. Svete, R. Milačič, B. Mitrović, B. Pihlar

The Royal Society of Chemistry 2001, Analyst, 2001, 126, 1346–1354

Analytical procedures were developed for the speciation of Zn using fast protein liquid chromatography (FPLC), flame atomic absorption spectrometry (FAAS) and convective interaction media (CIM) fast monolithic chromatography with FAAS and electrospray (ES)-MS-MS detection. The investigation was performed on synthetic solutions (2 µg cm-3 Zn) of hydrated Zn2+ species and Zn complexes with citrate, oxalate and EDTA (ligand-to-Zn molar ratio 100 : 1) over a pH range from 5.4 to 7.4. It was found that Zn interacts with various buffers and the careful adjustment of the pH with diluted solutions of KOH is, therefore, required. FPLC separations were carried out on a Mono Q HR 5/5 strong anion-exchange column, applying an aqueous 1 mol dm-3 NH4NO3 linear gradient elution over 15 min, at a flow rate of 1.0 cm3 min−1. The separated Zn species were determined in 1.0 cm3 eluate fractions “off line” by FAAS. Speciation of Zn was also performed on a weak anion-exchange CIM DEAE fast monolithic disc by applying an aqueous 0.4 mol dm-3 NH4NO3 linear gradient elution over 7.5 min, at a flow rate of 2.0 cm3 min−1 and determination of the separated Zn species in 1.0 cm3 eluate fractions “off line” by FAAS. Zn-binding ligands in separated fractions were also characterized by electrospray (ES)-MS-MS analysis. The CIM DEAE disc was found to be more efficient in the separation of negatively charged Zn complexes than the Mono Q FPLC column. On the CIM DEAE disc Zn–citrate was separated from both Zn–oxalate and from Zn–EDTA. All these species were also separated from hydrated Zn2+, which was eluted with the solvent front. This method has an advantage over commonly used analytical techniques for the speciation of Zn which are only able to distinguish between labile and strong Zn complexes. Good repeatability of the measurements (RSD 2–4%), tested for six parallel determinations (2 µg cm-3 Zn) of Zn–EDTA, Zn–citrate and Zn–oxalate was found at a pH of 6.4 on a CIM DAEA disc. The limit of detection (3s) for the separated Zn species was 10 ng cm-3. The proposed analytical procedure was applied to the speciation of Zn in aqueous soil extracts and industrial waste water from a lead and zinc mining area.

Purchase full article

Full view