On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2004

D. G. Glover, M. Barut, A. Podgornik, M. Peterka, A. Štrancar

BioProcess International, Oct 2004, 58-63

The sequencing of the human genome and the rise of proteomics have increased the numbers of potential therapeutic targets. Biotechnology companies need to increase productivity, decrease discovery and production costs, and use technologies that easily transfer across departments if they wish to remain competitive. The most important tools are those for separation (purification) of target substance(s). They should be easy to use and offer an identical performance and purification profile no matter where they are implemented — in discovery, production, or quality assurance (QA).

CIM Convective Interaction Media short monolithic columns are just such a unifying technology. Produced in shapes and sizes from microliter to liter scale, they represent an evolutionary approach to meeting biochromatographic separation requirements in research and product development. Able to withstand 1 M NaOH with no loss of capacity or resolution, these easily scalable columns have been optimized for analysis and cGMP production of complex biomolecules ranging from oligonucleotides and plasmid DNA (pDNA) to proteins and viruses.

Read full article

Full view

P. N. Nesterenko, M. A. Rybalko

Mendeleev Commun. 2004

The continuous flow gradient and its effect on chromatographic parameters were investigated for the separations of inorganic anions on a monolithic porous disk with bonded hydroxyproline residues.

Purchase full article

Full view

2003

E. G. Vlakh, G. A. Platonova, G. P. Vlasov, C. Kasper, A. Tappe, G. Kretzmer, T. B. Tennikova

Journal of Chromatography A, 992 (2003) 109–119

The recently discovered serine protease called tissue plasminogen activator (t-PA) enables efficient dissolution of blood clots. t-PA works by converting plasminogen into its active form, plasmin, dissolving the major component of blood clots, fibrin. The activation of plasminogen by t-PA is enhanced by the presence of fibrin, and this is probably due to the fact that both plasminogen and t-PA possess high affinity binding sites for fibrin. Besides fibrin, fibrin monomers and some fibrin(ogen) degradation products, certain synthetic polymers (for instance, poly-l-lysines) can provide the same stimulation of plasminogen activation. The recently developed high-performance monolithic-disk chromatography, HPMDC, could become the most convenient way to study biological pairs of interest. The inherent speed of HPMDC isolation facilitates the recovery of a biologically active product, since the exposure to putative denaturing influences, such as solvents or temperature, is reduced. The better mass transfer mechanism (convection rather than diffusion) allows to consider only the biospecific reaction as time limiting. The step-by-step modeling of hypothetical affinity pairs between t-PA and different types of oligo/polymer forms of linear and branched lysine derivatives obtained both by initiated polycondensation and solid-phase peptide synthesis using HPMDC seemed to be possible and a quite useful tool. The results of quantitative evaluation of such affinity interactions were compared with those established for natural affinity counterparts to t-PA (monoclonal antibodies, plasminogen, fibrinogen). The role of steric structure of lysine ligands was observed and analyzed. The results allowing to make the practical choice of affinity systems will be used for development of fast and efficient analytical and preparative methods for the downstream processes of recombinant production of this valuable enzyme.

Purchase full article

Full view

I. Mihelič, T. Koloini, A. Podgornik

Journal of Applied Polymer Science, Vol. 87, 2326-2334 (2003)

Monolithic stationary phases are becoming increasingly important in the field of liquid chromatography. Methacrylate-based monoliths are produced via free-radical bulk polymerization. The preparation of large-volume monoliths is a major problem because the intensive heat released during polymerization causes distortion of the porous monolithic structure. This work presents experimental measurements of temperature distributions during polymerization in moulds of different sizes and at various experimental conditions. A mathematical model for the prediction of temporal and spatial temperature distribution during the polymerization of methacrylate-based monolithic columns is introduced. The polymerization is described by an unsteady-state heat conduction equation with the generation of heat related to the general kinetics of polymerization. Predictions from the mathematical model are in good agreement with the experimental measurements at different experimental conditions. A method for construction of large-volume monolithic columns is presented and an attempt is made to adopt the developed mathematical model in annular geometry.

Purchase full article

Full view

P. Milavec Žmak, H. Podgornik, J. Jančar, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1006 (2003) 195–205

Convective Interaction Media (CIM) columns are monolithic columns optimized for the separation of macromolecules. Some of them operate in the axial mode while others operate in the radial mode depending on the column size. In this work we tested the approach suggested by Yamamoto [Biotechnol. Bioeng., 48 (1995) 444] for transfer of gradient methods between columns of different size. A simplified equation for transfer was derived together with a criterion for its application. Separation was evaluated for a standard protein mixture and peroxidase enzymes present in fermentation broth. Salt and pH gradients were applied. Similar resolutions were obtained for each sample on all columns which demonstrates that the proposed approach can be successfully used for method scale-up on this type of column.

Purchase full article

Full view

M. Merhar, A. Podgornik, M. Barut, M. Žigon, A. Štrancar

J. Sep. Sci. 2003, 26, 322–330

Methacrylate-based monoliths are formed during radical copolymerization as a consequence of the precipitation of polymeric chains from the reaction mixture, which consists of monomers, initiator, and the porogenic solvents. The effect of various methacrylate monomers on the porous structure of the monolith was investigated. Although the chemical structure of the monomers significantly affects the size of the pores and the porosity, the mechanism of pore formation in the case of the precipitation during polymerization is preserved. The porous structure was further correlated with the specific surface area, pressure drop, and dynamic binding capacity of the monoliths studied.

Purchase full article

Full view

A. Podgornik, M. Barut, A. Štrancar

Encyclopedia of Chromatography DOI: 10.1081/E-ECHR 120016288, 2003

Chromatographic columns are typically several centimeters in length, resulting in a high number of column plates, and, consequently, such columns have high efficiency. These properties allow even very similar molecules to be separated. This is especially true for smaller molecules, where the separation is based on selective migration. For large molecules, a different separation mechanism is usually required. Large molecules normally interact with the matrix at several binding sites. Consequently, their adsorption isotherms are very steep, almost rectangular. For such molecules, there exists only a very narrow mobile phase range within which they interact with the active moieties on the stationary phase, but are not irreversibly retained. To elute them from the matrix, a change of the mobile phase composition is required. Therefore the separation is based upon the selective elution and requires the use of gradient chromatographic methods. For this type of separation, the column length is less important and the efficient separations can be achieved even with extremely short columns.

Purchase full article

Full view

P. Kramberger, D. Glover, A. Štrancar

American Biotechnology Laboratory, 2003, 27-28

Research in molecular and cell biology has shown that macromolecules such as pDNA and virus vectors, together called nanoparticles, have the potential to assist in the prevention and treatment of some human diseases. The most important step in their production is the downstream processing (isolation and cleaning). Precipitation, ultrafiltration, and LC techniques are the most widely used for these purposes, but only LC can purify the product so that it is recognized as safe for therapeutic use.

Apart from reduced yield, downstream processing can cause minor or even major modifications in the structure of the biomolecule. Usually these modifications do not affect the activity of the product, but may change its antigenicity. Minimizing these changes to maintain product safety is the main objective in the downstream processing of nanoparticles. For the efficient isolation of labile biomolecules, liquid chromatographic supports should provide fast and efficient separation in order to decrease biomolecule degradation; have high, preferably flow-unaffected capacity and resolution; and exhibit low backpressure. They should be stable, even if harsh conditions are applied during sanitation (e.g., 1 MNaOH), and should be easy to handle and operate.

CIM® (Convection Interaction Media) monolithic chromatographic columns (BIA Separations, Ljubljana, Slovenia) meet all of these requirements. This application note will discuss the columns and their use on human models and plant viruses and pDNA.

Full view

2002

A. Podgornik, M. Barut, S. Jakša, J. Jančar, A. Štrancar

Journal of Liquid Chromatography & Related Technologies Vol. 25, No. 20, pp. 3097–3114, 2002

Convective Interaction Media® (CIM) disk monolithic columns are specific among the chromatographic columns because of their monolithic structure and extremely short column length. In this work, HETP values and Z factors for different groups of molecules—proteins, DNA, oligonucleotides, peptides, and organic acids on strong anion exchange CIM disk monolithic columns were determined. Results are discussed in terms of the molecule structures and applied to develop different approaches for successful separation of abovementioned group of molecules on these types of columns.

Purchase full article

Full view

R. Hahn, M. Panzer, E. Hansen, J. Mollerup, A. Jungbauer

Separation Science and Technology, 37(7), 1545–1565 (2002)

The mass transfer properties of polyglycidylmethacrylate–ethylenedimethacrylate monolithic ion-exchangers (convective interaction media disks) were evaluated. As a reference material, the particulate ion-exchanger Source 30 was selected. The model proteins lysozyme, bovine serum albumin, and IgG were loaded at different concentrations and velocities. The mass transfer zones obtained with the monoliths were affected by neither the linear flow velocity nor the protein concentration in the mobile phase. The reduced height equivalent to one theoretical plate (HETP) of monoliths were independent of the reduced velocity. This was not the case for the particulate material.

Purchase full article

Full view

A. Štrancar, A. Podgornik, M. Barut, D. Glover

BIOforum International 3/2002

In adsorptive chromatographic modes, the slope of the capacity factor k' (defined as the molar ratio of the separated compound in the stationary phase and the mobile phase) plot versus composition of the mobile phase is very steep. Up to a certain composition of the mobile phase, k' is so high that the protein is bound to the stationary phase and does not move along the column. Reaching a defined point, a small change of the mobile phase composition causes a rapid decrease in k' to a value near zero. At this point, the protein dissolves in the mobile phase and passes through the column practically without any retention. In other words, the protein remains adsorbed at the top of the column until the eluting power of the mobile phase reaches the point at which a small change in the composition of the mobile phase causes the movement of the protein without any retention. One can also speak about selective elution of the compound. As a result of this process, even very short columns can provide very good separations and recovery, while longer columns might cause problems due to unspecific binding, product degradation and minor changes in the structure of the protein which increase with the length of the column. On the other hand, short-beds are very difficult to pack with particles and form channels which eliminate the resolution power of the column. Monolithic supports offer an ideal solution to avoid most of these problems.

Full view

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

Biotechnology and Bioengineering 79 (2002) 733-740

Screening of peptide ligands for affinity chromatography usually involves incubation with the target protein in a batch system. In an additional step, peptides with fast binding kinetics have to be selected in respect to satisfactory performance under flow conditions on a support ensuring optimal three-dimensional presentation of the peptide. We have developed a rapid screening system based on peptide synthesis and screening on CIM® disks. The disk size was minimized to fit into microplates usually applied for solid-phase extraction. In combination with a vacuum manifold, semi-automated peptide synthesis and screening for binding to a target protein under simulated chromatography conditions are possible. Various analytical methods can be applied for parallel and automated determination of the quantity, integrity, or activity of the target protein in the flow through or bound to the affinity support. This system also allows parallel screening for suitable chromatographic conditions like running buffer, washing, and elution conditions. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 79: 733–740, 2002.

Purchase full article

Full view

T. Tennikova, A. Štrancar

LabPlus international February - March 2002, Volume 16

Monolithic supports are a novel generation of stationary phases that can be used for liquid and gas chromatography, capillary electrochromatography, bioconversions, as well as supports for solid phase synthesis. In contrast to individual particles packed into chromatographic columns, monolithic supports are cast as continuous homogeneous phases. They provide high rates of mass transfer at lower pressure drops and enable much faster separations. In addition to the speed, the nature of the pores allows easy permeability for large molecules. Monolithic supports are thus the method of choice for the separation of proteins, oligonucleotides, and nanoparticles such as pDNA and viruses. In this article we review the application of the monlithic columns to bioaffinity chromatography.

Full view

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

Biotechnology and Bioengineering 79 (2002) 733-740

Screening of peptide ligands for affinity chromatography usually involves incubation with the target protein in a batch system. In an additional step, peptides with fast binding kinetics have to be selected in respect to satisfactory performance under flow conditions on a support ensuring optimal three-dimensional presentation of the peptide. We have developed a rapid screening system based on peptide synthesis and screening on CIM® disks. The disk size was minimized to fit into microplates usually applied for solid-phase extraction. In combination with a vacuum manifold, semi-automated peptide synthesis and screening for binding to a target protein under simulated chromatography conditions are possible. Various analytical methods can be applied for parallel and automated determination of the quantity, integrity, or activity of the target protein in the flow through or bound to the affinity support. This system also allows parallel screening for suitable chromatographic conditions like running buffer, washing, and elution conditions.

Purchase full article

Full view

2001

P. Svete, R. Milačič, B. Mitrović, B. Pihlar

The Royal Society of Chemistry 2001, Analyst, 2001, 126, 1346–1354

Analytical procedures were developed for the speciation of Zn using fast protein liquid chromatography (FPLC), flame atomic absorption spectrometry (FAAS) and convective interaction media (CIM) fast monolithic chromatography with FAAS and electrospray (ES)-MS-MS detection. The investigation was performed on synthetic solutions (2 µg cm-3 Zn) of hydrated Zn2+ species and Zn complexes with citrate, oxalate and EDTA (ligand-to-Zn molar ratio 100 : 1) over a pH range from 5.4 to 7.4. It was found that Zn interacts with various buffers and the careful adjustment of the pH with diluted solutions of KOH is, therefore, required. FPLC separations were carried out on a Mono Q HR 5/5 strong anion-exchange column, applying an aqueous 1 mol dm-3 NH4NO3 linear gradient elution over 15 min, at a flow rate of 1.0 cm3 min−1. The separated Zn species were determined in 1.0 cm3 eluate fractions “off line” by FAAS. Speciation of Zn was also performed on a weak anion-exchange CIM DEAE fast monolithic disc by applying an aqueous 0.4 mol dm-3 NH4NO3 linear gradient elution over 7.5 min, at a flow rate of 2.0 cm3 min−1 and determination of the separated Zn species in 1.0 cm3 eluate fractions “off line” by FAAS. Zn-binding ligands in separated fractions were also characterized by electrospray (ES)-MS-MS analysis. The CIM DEAE disc was found to be more efficient in the separation of negatively charged Zn complexes than the Mono Q FPLC column. On the CIM DEAE disc Zn–citrate was separated from both Zn–oxalate and from Zn–EDTA. All these species were also separated from hydrated Zn2+, which was eluted with the solvent front. This method has an advantage over commonly used analytical techniques for the speciation of Zn which are only able to distinguish between labile and strong Zn complexes. Good repeatability of the measurements (RSD 2–4%), tested for six parallel determinations (2 µg cm-3 Zn) of Zn–EDTA, Zn–citrate and Zn–oxalate was found at a pH of 6.4 on a CIM DAEA disc. The limit of detection (3s) for the separated Zn species was 10 ng cm-3. The proposed analytical procedure was applied to the speciation of Zn in aqueous soil extracts and industrial waste water from a lead and zinc mining area.

Purchase full article

Full view

I. Mihelič, M. Krajnc, T. Koloini, A. Podgornik

Ind. Eng. Chem. Res. 2001, 40, 3495-3501

Monolithic stationary phases are becoming more and more important in the field of liquid chromatography, because they enable extremely fast separations. Methacrylate-based monoliths are produced via a free-radical bulk polymerization of glycidyl methacrylate and ethylene dimethacrylate using a benzoyl peroxide as an initiator. Preparation of large monoliths represents a big problem because of the heat release during the polymerization, which consequently leads to the distortion of the structure. A closer investigation of the polymerization, using differential scanning calorimetry, was performed in order to determine global kinetic parameters. A multiple heating rate method, based on the work of Ozawa, Flynn, and Wall, was applied for estimation of the values of the apparent activation energy, preexponential factor, and reaction order. Global polymerization kinetics is of first order with A = 1.681 × 109 s-1 and Ea,app = 81.5 kJ/mol, where the heat of polymerization is approximately 190 J/g. In addition, the influence of air and nitrogen atmosphere on polymerization is presented.

Purchase full article

Full view

M. Merhar, A. Podgornik, M. Barut, S. Jakša, M. Zigon, A. Štrancar

J. Liq. Chrom. & Rel. Technol., 24(16), 2429-2443 (2001)

Monoliths have already proven to be efficient chromatographic supports for the separation of various types of molecules. In this paper, the characterization of the novel reversed-phase support, CIM® RP-SDVB disk monolithic column is presented.

Using a 3 mm long RP-SDVB disk monolithic column, excellent separation of proteins within a very short time was achieved. The pressure drop observed on the column was considerably low (few bars), even at flow rates of the mobile phase up to 30 mL/min. Due to the low pressure drop, the use of high flow rates was preferred since they did not influence the quality of the gradient separation. The separation of test proteins was performed within only 14 seconds; faster separations were limited by the configuration of the HPLC system.

Furthermore, RP-SDVB disk monolithic columns were applied for fast separation of peptides. Five peptides of different lengths and composition were successfully separated in a very short time.

Finally, the preparative purification on the laboratory scale of the complex sample of oligodeoxynucleotide within a range of 1 minute demonstrates practical applicability of these columns.

Purchase full article

Full view

I. Mihelič, T. Koloini, A. Podgornik, M. Barut, A. Štrancar

Acta Chim. Slov. 2001, 48, 551-564

Monolithic stationary phases are becoming very important field of liquid chromatography. Methacrylate based CIM Convective Interaction Media® monolithic columns and are produced via radical polymerization, which results in a rigid and chemically very stable porous monolithic structure. Some characteristics of small-scale monolithic columns and an example of extremely fast separation of biomolecules are presented in the paper. However, the preparation of large and homogeneous monolithic columns represents a big problem, because the heat released during the polymerization causes distortion of the monolithic structure. A mathematical model employing the polymerization kinetics for the prediction of the temperature profiles and a comparison with the experimental results is presented with the emphasis on the conversion and the rate od the heat release profiles. Finally, the characteristics of a large-scale monolithic column are presented.

Purchase full article

Full view

2000

R. Hahn, A. Jungbauer

Analytical Chemistry, 7.2. 2000, (4853-4858)

Monoliths are stationary phases cast as a continuous medium which are interlaced by flow channels ramified with micropores. Pulse response experiments with bovine serum albumin as a model protein were applied for testing polymethacrylate-based monoliths, resulting in peak broadening that practically was not influenced by the chromatographic velocity. An empirical model was developed to describe peak broadening, allowing a term to account for the pore convection and a term for the pore diffusion. A diffusional distance lower than 10 nm was estimated. This corresponds to values observed with monodisperse 1-μm particles. Systematic investigations by changing the response time of the detector showed that the full potential of the monoliths could not be exploited, since the currently available chromatography systems are the limiting factor regarding the speed of data acquisition and virtual peak broadening by the infinite length of the detector. Inertia of the liquid and synchronization between liquid handling and electronic control introduced an additional disturbance. At the lowest possible response time, reliable peak data could be obtained up to a velocity of 35 cm/min. The pressure drop along the continuous bed was much smaller compared to a conventionally packed bed. Different flow patterns and significantly reduced eddy vortexes may be responsible for the high specific permeability.

Purchase full article

Full view

H. LeThanh, B. Lendl

Analytica Chimica Acta 422 (2000) 63–69

A fully automated method for the rapid determination of organic acids (citric-, malic- and tartaric acid) and sugars (glucose, fructose, and sucrose) in soft drinks by sequential injection Fourier transform infrared (FTIR) spectroscopy is presented. A convective interaction media (CIM) disc carrying quaternary amino moieties was added as a solid phase extraction column to the flow system. Upon injection of a sample the organic acids were completely retained on the CIM disc whereas sugars passed to the flow cell. The organic acids were subsequently eluted by injection of an alkaline (pH 8.5) 1 M sodium chloride solution and recorded in their fully deprotonated form as a second flow injection peak. In both cases, the FTIR spectra corresponding to the peak maxima were selected for data evaluation. Two partial least squares models, one for sugars and the other for organic acids, were constructed based on the analysis of standards containing all six analytes. The developed method was applied to natural samples yielding results which were in good agreement with those obtained by an external reference method (enzymatic test kits). Deviations in the results were 3.4. and 4.1% for citric and malic acid and ranged from 4.7–5.1% for the sugars. The developed method is characterized by its short analysis time, experimental simplicity and its potential applications in routine analysis and process control.

Purchase full article

Full view