On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
1999

CIM (Convective Interaction Media) represent a new generation of chromatographic supports. In contrast to conventional particle supports, where the void volume between individual porous particles is unavoidable, CIM supports consist of a single monolith with open channels. In this way, molecules to be separated are transported into the pores by convection, resulting in short separation times.

CIMsupports proved to be very efficient for extremely fast separations of proteins in ion exchange, hydrophobic interaction and affinity chromatography mode. Recently, the successful separation of DNA as well as some smaller molecules like e.g. peptides and oligonucleotides were also performed.

All the above mentioned separations were carried out on an analytical scale with the use of 0.34 mL CIM discs. The scale-up of monolithic units was limited mainly due to the problems associated to the mechanical stability, poor sample distribution and higher backpressures. The change from the axial to radial flow enables the design of the so-called 8 and 80mLCIM tubes. They were basically designed for very fast purification of macromolecules.

In this work we present some basic characteristics of these newly developed units in terms of separation and binding capacity. In addition, some practical examples will be given and discussed as well.

Attachments

Full view

1998

White rot fungus Phanerochaete chrysosporium produces under nitrogen limitation extracellular lignin peroxidases (LiP). They are able to partially depolymerize lignin and to oxidise several xenobiotics (DDT, PCB, PAH,…) and synthetic dyes. Trough HPLC separation and isoelectric focusing multiple molecular forms of LiP have been determined and isolated from the culture filtrate. Depending on growth conditions, separation technique, strain employed and culture age 2-15 different LiP izoenzymes were observed in culture media of Phanerochaete chrysosporium. They are structurally similar but differ in stability, quantity and in catalytic properties. For the isolation of LiP from growth medium, mostly the procedure employing HPLC ionexchange columns as shown on Scheme 1 is used. For the separation of LiP isoenzymes from the culture filtrate, we used CIM (Convective Interaction Media) units. Their advantage is very fast separation of macromolecules due to their particular threedimensional structure. In contrast to particle supports containing closed pores, CIM units consist of monolith porous material containing flow through pores. Therefore, macromolecules to be separated are transported to the active site by convection rather than by diffusion. As a consequence, the separation resolution and dynamic binding capacity are flow independent. As such CIM units can be advantageous also for lignin peroxidase isoenzymes separation and purification.

Attachments

Full view