Selective Hydrophobic Interaction Chromatography for High Purity of Supercoiled DNA Plasmids

Klemen Božič, Ajda Sedlar, Špela Kralj, Urh Černigoj, Aleš Štrancar, Rok Sekirnik

Biotechnology and Bioengineering, 2024, 1–11

High purity of plasmid DNA (pDNA), particularly in supercoiled isoform (SC), is used for various biopharmaceutical applications, such as a transfecting agent for production of gene therapy viral vectors, for pDNA vaccines, or as a precursor for linearized form that serves as a template for mRNA synthesis. In clinical manufacturing, pDNA is commonly extracted from Escherichia coli cells with alkaline lysis followed by anion exchange chromatography or tangential flow filtration as a capture step for pDNA. Both methods remove a high degree of host cell contaminants but are unable to generically discriminate between SC and open-circular (OC) pDNA isoforms, as well as other DNA impurities, such as genomic DNA (gDNA). Hydrophobic interaction chromatography (HIC) is commonly used as polishing purification for pDNA. We developed HIC-based polishing purification methodology that is highly selective for enrichment of SC pDNA. It is generic with respect to plasmid size, scalable, and GMP compatible. The technique uses ammonium sulfate, a kosmotropic salt, at a concentration selective for SC pDNA binding to a butyl monolith column, while OC pDNA and gDNA are removed in flow-through. The approach is validated on multiple adeno-associated virus- and mRNA-encoding plasmids ranging from 3 to 12 kbp. We show good scalability to at least 300 mg of >95% SC pDNA, thus paving the way to increase the quality of genomic medicines that utilize pDNA as a key raw material.

Read full article

    Your Cart
    Your cart is emptyReturn to Shop
      This site is registered on as a development site. Switch to a production site key to remove this banner.