Increasing Dynamic Binding Capacity of Oligo dT Using CIM 96 Well Oligo dT Plates

  • How to increase the binding capacity of Oligo dT18?
  • Can a design of experiment approach be used to optimise Oligo dT binding?
  • Is the monolith available in a high throughput format for liquid handlers?
  • Is it possible to use a 96-well plate Oligo dT device?
Buffer conditions (salt, additives) influence mRNA binding on Oligo dT. Three contributing factors were identified and tested: NaCl, MgCl2 and Gu-HCl, the latter leading to a capacity of >6 mg/mL.


Affinity-based chromatographic isolation of mRNA is robust and simple, lending itself as a useful industrial platform. mRNA constructs typically contain a 3’ polyA tail to increase stability in vivo, thereby affording the possibility of affinity purification using oligo-deoxythymidinic acid (Oligo dT) probes covalently coupled to a solid support. Poly-adenylated mRNA forms a stable hybrid with Oligo dT under high-salt conditions which is destabilized when the salt is removed, allowing mRNA to be released. Typical dynamic binding capacity (DBC) of CIMmultus Oligo dT for mRNA is 2-4 mg/mL; ever higher IVT productivity will require higher binding capacities.

Screening experiments to elucidate factors affecting CIMmultus Oligo dT binding capacity for mRNA were performed in CIM 96-well Oligo dT format. A simplified model identified NaCl, guanidine hydrochloride (Gu-HCl) and MgCl2 concentration as the key factors contributing to DBC. Buffer chemistry, buffer pH, salt type and mRNA concentration had little or no effect on DBC.

    Your Cart
    Your cart is emptyReturn to Shop
      This site is registered on as a development site. Switch to a production site key to remove this banner.