Rok Sekirnik and Tomas Kostelec
BioProcess International’s special report, December 2021
Abstract:
Rapid response to global pandemics requires the manufacture of billions of vaccine doses within months. This short timeline must allow for design and testing of active ingredients, development of production and purification processes, clinical evaluations, regulatory filings, and manufacturing. Existing purification methods often have been adopted from laboratory-scale techniques to allow rapid implementation, and those have provided adequate product quality. But future mRNA development will require optimized production and purification processes.
Chromatography has been a workhorse of biomanufacturing for decades, including for monoclonal antibodies, plasmid DNA, viruses, and other modalities — as well as for supporting analytics. As an emerging therapeutic modality, mRNA production requires the development of new methodologies to suit its peculiar physicochemical profile: large, charged, and relatively unstable. Due to requirements for high purity, these methodologies will be based in large part on chromatography.
This article describes the versatility of chromatography when applied to mRNA production, starting with the purification of the key raw material (plasmid DNA) to final polishing of mRNA drug substance.
- At which scale should chromatographic purification be introduced?
- Are there analytical chromatography solutions to improve my process?
- How to control dsRNA contamination in drug substance?