Adenoviral Vector COVID-19 Vaccines: Process and Cost Analysis

Rafael G. Ferreira, Neal F. Gordon, Rick Stock, Demetri Petrides

Processes 2021, 9(8), 1430

The COVID-19 pandemic has motivated the rapid development of numerous vaccines that have proven effective against SARS-CoV-2. Several of these successful vaccines are based on the adenoviral vector platform. The mass manufacturing of these vaccines poses great challenges, especially in the context of a pandemic where extremely large quantities must be produced quickly at an affordable cost. In this work, two baseline processes for the production of a COVID-19 adenoviral vector vaccine, B1 and P1, were designed, simulated and economically evaluated with the aid of the software SuperPro Designer.

In the purification process the retentate from the ultrafiltration step was subjected to anion-exchange chromatography (AEX), operating in capture mode, to remove protein and DNA impurities. A strong anion-exchange column with a monolithic structure (CIMmultus QA from Sartorius BIA Separations) is used in this step due to its high binding capacity for VPs.

Both processes were sized to produce 400 M/yr vaccine doses. The media and facility-dependent expenses were found to be the main contributors to the operating cost. The results indicate that adenoviral vector vaccines can be practically manufactured at large scale and low cost.

Read full article

    Your Cart
    Your cart is emptyReturn to Shop
      This site is registered on as a development site. Switch to a production site key to remove this banner.