On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2007

S. Laschober, M. Sulyok, E. Rosenberg

Journal of Chromatography A, 1144 (2007) 55-62(2007) 55-62

The present work aims at the optimisation of the synthesis of methyl-silsesquioxane monolithic capillary columns using a sol–gel based protocol. The influence of reaction conditions such as temperature, reaction mixture composition and catalyst concentration has been examined. The morphology of the products was studied by scanning electron microscopy and nitrogen adsorption. Monolithic capillary columns were obtained with a skeleton-like structure with open pores. Pore diameters vary from 0.8 to 15 μm, diameters of the xerogel network vary from 0.4 to 12 μm, respectively. Specific surface areas up to 334 m2/g have been observed, however, many materials did not possess areas above few m2/g which represents the limit of detection of the nitrogen porosimetry measurements. Excellent adhesion to the capillary wall was observed in all cases, and drying was possible at ambient conditions without the formation of cracks.

Purchase full article

Full view

E. Machtejevas, S. Andrecht, D. Lubda, K. K. Unger

Journal of Chromatography A, 1144 (2007) 97-101

The following particulate and monolithic silica columns were implemented in a fully automated and flexible multidimensional LC/MS system with integrated sample clean-up, to perform the analysis of endogeneous peptides from filtered urine and plasma samples: restricted access sulphonic acid strong cation-exchanger (RAM-SCX) for sample clean-up, RP 18 Chromolith guard columns as trap columns and 100 μm I.D. monolithic RP 18 fused silica capillary columns as last LC dimension. The results show sufficient overall system reproducibility and repeatability. Implementation of monolithic silica columns added an additional flexibility with respect to flow rate variation and adjustment due to the low column back pressures. Also, monolithic columns showed a lower clogging rate in long-term usage for biological samples as compared to particulate columns. The applied system set-up was tested to be useful for the routine peptide screening in search of disease biomarkers.

Purchase full article

Full view

P. Kramberger, M. Peterka, J. Boben, M. Ravnikar, A. Štrancar

Journal of Chromatography A, 1144 (2007), pg. 143–149

Drawbacks of conventional virus purification methods have led to the development of new, mostly chromatography-based methods. Short monolithic columns are stationary phases intended for purification of large molecules. In this work efficient chromatographic purification of tomato mosaic virus (ToMV) from plant material is described. Based on short monolithic column, the purification process was shortened from 5 days to 2 hours. High viral purity was achieved and recovery of chromatographic step was up to 90%. In addition, these columns enabled preliminary quantification of the virus in just a few minutes, much faster than other quantification methods (e.g. enzyme-linked immunosorbent assay or real-time polymerase chain reaction) which take 1–2 days. These results demonstrate the potential of short monolith column technology for purification and analysis of different viruses.

Purchase full article

Full view

J. Boben, P. Kramberger, N. Petrovič, K. Cankar, M. Peterka, A. Štrancar, M. Ravnikar

European Journal of Plant Pathology (2007) 118:59-71

A quantitative RT real-time PCR method was developed for the detection and quantification of Tomato mosaic virus (ToMV) in irrigation waters. These have rarely been monitored for the presence of plant pathogenic viruses, mostly due to the lack of efficient and sensitive detection methods. The newly developed method presented here offers a novel approach in monitoring the health status of environmental waters. ToMV was reliably detected at as low as 12 viral particles per real-time PCR reaction, which corresponds to the initial concentration of approximately 4.2 × 10-10 mg (6,300 viral particles) of ToMV per ml of sample. The sensitivity of the method was further improved by including the Convective Interaction Media® (CIM) monolithic chromatographic columns for quick and efficient concentration of original water samples. Seven out of nine water sources from different locations in Slovenia tested positive for ToMV, after concentrating the sample. Four samples tested ToMV-positive without the concentrating procedure. The presence and integrity of infective ToMV particles in the original sample, as well as in the chromatographic fraction, was confirmed using different methods from test plants, DAS ELISA to electron microscopy and real-time PCR. In this study, we propose a unique and simple diagnostic scheme for rapid, efficient, and sensitive monitoring of irrigation waters that could also be adopted for other plant, human or animal viruses.

Read full article

Full view

M. Peterka, D. Glover, P. Kramberger, M. Banjac, A. Podgornik, M. Barut, A. Štrancar

BioProcessing Journal, March/April 2005

The last 30 years have seen rapid and dramatic developments in recombinant DNA technology and the related biological sciences. In 1972, Paul Berg's group used restriction enzymes to cut DNA in half and then used ligases to stick the pieces of the DNA back together. By doing this, they produced the first recombinant DNA. Within a year, the first genetically engineered bacterium existed. A little more than ten years later, recombinant human insulin was approved for diabetic patients and became the first recombinant healthcare product. Before the end of the 1980s, the first gene therapy trial had occurred. Today, a large number of recombinant proteins are used as marketed drugs and even more are in clinical trials targeting a wide range of diseases.

Purchase full article

Full view

2005

M. Barut, A. Podgornik, P. Brne, A. Štrancar

J. Sep. Sci. 2005, 28, 1876-1892

New therapeutics that are being developed rely more and more on large and complex biomacromolecules like proteins, DNA, and viral particles. Manufacturing processes are being redesigned and optimized both upstream and downstream to cope with the ever-increasing demand for the above target molecules. In downstream processing, LC still represents the most powerful technique for achieving high yield and high purities of these molecules. In most cases, however, the separation technology relies on conventional particle-based technology, which has been optimized for the purification of smaller molecules. New technologies are, therefore, needed in order to push the downstream processing ahead and into the direction that will provide robust, productive, and easy to implement methods for the production of novel therapeutics. New technologies include the renaissance of membranes, various improvements of existing technologies, but also the introduction of a novel concept – the continuous bed or monolithic stationary phases. Among different introduced products, Convective Interaction Media short monolithic columns (SMC) that are based on methacrylate monoliths exhibit some interesting features that make them attractive for these tasks. SMC can be initially used for fast method development on the laboratory scale and subsequently efficiently transferred to preparative and even more importantly to industrial scale. A brief historical overview of methacrylate monoliths is presented, followed by a short presentation of theoretical considerations that had led to the development of SMC. The design of these columns, as well as their scale-up to large units, together with the methods for transferring gradient separations from one scale to another are addressed. Noninvasive methods that have been developed for the physical characterization of various batches of SMC, which fulfill the regulatory requirements for cGMP production, are discussed. The applications of SMC for the separation and purification of large biomolecules, which demonstrate the full potential of this novel technology for an efficient downstream processing of biomolecules, are also presented.

Purchase full article

Full view

A. Podgornik, A. Štrancar

Biotechnology Annual Review, 11 (2005) 281-333

Modern downstream processing requires fast and highly effective methods to obtain large quantities of highly pure substances. Commonly applied method for this purpose is chromatography. However, its main drawback is its throughput since purification, especially of large molecules, requires long process time. To overcome this problem several new stationary phases were introduced, among which short layer monoliths show superior properties for many applications. The purpose of this review is to give an overview about short methacrylate monolithic columns commercialised under the trademark Convective Interaction Media® (CIM). Their unique properties are described from different perspectives, explaining reasons for their application on various areas. Approaches to prepare large volume methacrylate monolithic column are discussed and optimal solutions are given. Different examples of CIM monolithic column implementation are summarised in the last part of the article to give the reader an idea about their advantages.

Purchase full article

Full view

A. Jungbauer

Journal of Chromatography A, 1065 (2005) 3–12

Bioseparation processes are dominated by chromatographic steps. Even primary recovery is sometimes accomplished by chromatographic separation, using a fluidized bed instead of a fixed bed. In this review, the action principles, features of chromatography media regarding physical and chemical properties will be described. An attempt will be made to establish categories of different media. Characteristics for bioseparation are the large pores and particle sizes. To achieve sufficient capacity for ultralarge molecules, such as plasmids or nanoparticles, such as viruses monoliths are the media of choice. In these media, the mass transport is accomplished by convection, and thus, the low diffusivity can be overcome. Common to all modern chromatography media is the fast operation. There are examples where a residence time of less then 3 min, is sufficient to reach the full potential of the adsorbent.

Purchase full article

Full view

P. Krajnc, N. Leber, D. Štefanec, S. Kontrec, A. Podgornik

Journal of Chromatography A, 1065 (2005) 69-73(2005) 69 - 73

Poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) monolithic supports were prepared by radical polymerisation of the continuous phase of water in oil high internal phase emulsions. Morphology of monolithic materials was studied by scanning electron microscopy and mercury intrusion porosimetry. The ratio of phase volume and the degree of crosslinking influenced the void size and pore size distribution of resulting polymers. Void sizes between 1 and 10 μm were observed and average pore sizes around 100 nm. Polymers with 60, 75, 80 and 90% pore volume were prepared and even samples with highest pore volume showed good mechanical stability. They were modified to bear weak-anion exchange groups and tested on the separation of standard protein mixture containing myoglobin, conalbumine and trypsin inhibitor. Good separation was obtained in a very short time similar to the separation obtained by commercial methacrylate monoliths. However, higher dispersion was observed. Bovine serum albumin dynamic binding capacity for monolith with 90% porosity was close to 9 mg/ml.

Purchase full article

Full view

N. Lendero, J. Vidič, P. Brne, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1065 (2005) 29-38(2005) 29 - 38

The objective of this study was to develop a fast, simple, non-destructive, non-toxic and low-priced method for determining the amount of ionic groups on resins, since the conventional titration method fails to give proper results on methacrylate monoliths. After the column had been pre-saturated with a high concentration buffer solution, a low concentration buffer solution of the same pH value was pumped through the column. Measuring pH and absorbance, the profiles with a shape of typical break-through curve were obtained. It was shown that the time of the pH transient, which appeared under such conditions, could be used as a measure of the total ionic capacity of ion-exchange monolithic columns. The effect of the column length, linear velocity and varying concentrations of buffer solutions on the time of the pH transient was examined. The method was shown to be suitable for determining the amount of ionic groups on both anion and cation monolithic columns. In addition, it could also be applied to particle bed columns. The time of the pH transient and the protein dynamic binding capacity were also compared and it was concluded that for a given monolith the protein capacity can be derived from the data obtained by the new method.

Purchase full article

Full view

I. Mihelič, D. Nemec, A. Podgornik, T. Koloini

Journal of Chromatography A, 1065 (2005) 59-67(2005) 59 - 67

Pressure drop analysis in commercial CIM disk monolithic columns is presented. Experimental measurements of pressure drop are compared to hydrodynamic models usually employed for prediction of pressure drop in packed beds, e.g. free surface model and capillary model applying hydraulic radius concept. However, the comparison between pressure drop in monolith and adequate packed bed give unexpected results. Pressure drop in a CIM disk monolithic column is approximately 50% lower than in an adequate packed bed of spheres having the same hydraulic radius as CIM disk monolith; meaning they both have the same porosity and the same specific surface area. This phenomenon seems to be a consequence of the monolithic porous structure which is quite different in terms of the pore size distribution and parallel pore nonuniformity compared to the one in conventional packed beds. The number of self-similar levels for the CIM monoliths was estimated to be between 1.03 and 2.75.

Purchase full article

Full view

T. B. Tennikova, J. Reusch

Journal of Chromatography A, 1065 (2005) 13-17(2005) 13 - 17

The history of the development of short monolithic beds is described.

Purchase full article

Full view

J. Vidić, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1065 (2005) 51-58(2005) 51-58

The influence of glass surface modification in order to determine strength of the monolith attachment was studied. Modification consists of pre-treatment of the glass with chemicals or boiling in deionized water, silanization and drying has been investigated on different types of glass. Amount of silane groups was determined by measurement of the contact angle between the glass surface and water drop. The highest values were found for soda–lime glass. Strength of the monolith attachment was established by pumping ethanol through the monolithic capillaries and measuring the pressure drop at which monolith was dislodged. Surprisingly, it was found that the critical part of the glass surface modification procedure is glass pre-treatment. Good results were obtained with glass boiled in water for 2.5 h or more.

Purchase full article

Full view

S. Yamamoto, A. Kita

Journal of Chromatography A, 1065 (2005) 45-50(2005) 45-50

Although linear salt gradient elution ion-exchange chromatography (IEC) of proteins is commonly carried out with relatively short columns, it is still not clear how the column length affects the separation performance and the economics of the process. The separation performance can be adjusted by changing a combination of the column length, the gradient slope and the flow velocity. The same resolution can be obtained with a given column length with different combinations of the gradient slope and the flow velocity. This results in different separation time and elution volume at the same resolution. Based on our previous model, a method for determining the separation time and the elution volume relationship for the same resolution (iso-resolution curve) was developed. The effect of the column length and the mass transfer rate on the iso-resolution curve was examined. A long column and/or high mass transfer rate results in lesser elution volume. The resolution data with porous bead packed columns and monolithic columns were in good agreement with the calculated iso-resolution curves. Although the elution volume can be reduced with increasing column length, the pressure drop limits govern the optimum conditions.

Purchase full article

Full view

M. Peterka, P. Kramberger, A. Štrancar

WANG, Perry G. (ur.). Monolithic chromatography and its modern applications. St Albans: ILM publications, 2010, pg. 489-508

Downstream processing (DSP) for purification can become a significant bottleneck in the production of novel biotherapeutics, such as viral vectors and vaccines (viral or DNA). Although different techniques can be used for the purification of large molecules and particles, liquid chromatography is the preferred method as it achieves the purity required by regulatory agencies. Despite the popularity of conventional chromatographic media, the diffusional mass transfer of large molecules and relatively small pore size remain limiting factors for the efficient separation of large biomolecules and particles. Methacrylate monoliths are a single-piece chromatographic support that consists of a highly porous material with an interconnected network of channels. The transport mechanism is predominantly based on convection, which allows rapid mass transfer between the mobile and stationary phase and so results in short separation times. Additionally, most of the active sites are located in the open, large channel structure and are therefore easily accessible, which results in a high DBC (DBC) for large molecules and viral particles. These characteristics make methacrylate monoliths an ideal chromatographic support for the separation and purification of extremely large molecules, such as large proteins, different types of DNA and virus particles.

Full view

2004

A. Podgornik, J. Jančar, M. Merhar, S. Kozamernik, D. Glover, K. Čuček, M. Barut, A. Štrancar

J. Biochem. Biophys. Methods 60 (2004) 179–189

Monoliths represent a special class of chromatographic supports. In contrast to other stationary phases, they consist of a single piece of highly porous material through which a sample is mainly transported by convection. As a consequence, monoliths enable fast separations and exhibit flow-unaffected properties, which make them attractive for purification of macromolecules like proteins or DNA. In this work, methacrylate-based monolithic columns with the bed volume up to 8000 ml are characterized. They perform high-resolution separations of several hundreds of grams of proteins per hour by utilizing liter per minute flow rates. They are incompressible under these operating conditions and resistant to strong alkaline conditions.

Purchase full article

Full view

D. G. Glover, M. Barut, A. Podgornik, M. Peterka, A. Štrancar

BioProcess International, Oct 2004, 58-63

The sequencing of the human genome and the rise of proteomics have increased the numbers of potential therapeutic targets. Biotechnology companies need to increase productivity, decrease discovery and production costs, and use technologies that easily transfer across departments if they wish to remain competitive. The most important tools are those for separation (purification) of target substance(s). They should be easy to use and offer an identical performance and purification profile no matter where they are implemented — in discovery, production, or quality assurance (QA).

CIM Convective Interaction Media short monolithic columns are just such a unifying technology. Produced in shapes and sizes from microliter to liter scale, they represent an evolutionary approach to meeting biochromatographic separation requirements in research and product development. Able to withstand 1 M NaOH with no loss of capacity or resolution, these easily scalable columns have been optimized for analysis and cGMP production of complex biomolecules ranging from oligonucleotides and plasmid DNA (pDNA) to proteins and viruses.

Read full article

Full view

P. Kramberger, N. Petrovič, A. Štrancar, M. Ravnikar

Journal of Virological Methods 120 (2004) 51-57120 (2004) 51-57

A new chromatographic medium, Convective Interaction Media® (CIM) disk monolithic columns, was applied to plant virus concentration. The ability of the columns to concentrate highly diluted plant viruses was tested on a model plant virus, rod-shaped tomato mosaic virus (ToMV). Enzyme-linked immunosorbent assay (ELISA) was used for the quantitative analysis. The virus was concentrated using a strong anion exchanger, CIM quaternary amine (QA) disk monolithic column. A high salt concentration was used to elute the concentrated virus from the columns. It has been demonstrated that ToMV, which had been diluted considerably below the sensitivity of ELISA, was concentrated by several orders of magnitude in the one-step procedure. Concentrated virus preparations could be used directly for ELISA testing. In comparison with methods described for concentrating plant viruses from irrigation water, the above procedure may provide a much faster and more efficient way to concentrate highly diluted plant viruses. The procedure could be applied to the testing of other highly diluted plant viruses, and to concentrating viruses for antiserum production.

Purchase full article

Full view

2003

I. Mihelič, T. Koloini, A. Podgornik

Journal of Applied Polymer Science, Vol. 87, 2326-2334 (2003)

Monolithic stationary phases are becoming increasingly important in the field of liquid chromatography. Methacrylate-based monoliths are produced via free-radical bulk polymerization. The preparation of large-volume monoliths is a major problem because the intensive heat released during polymerization causes distortion of the porous monolithic structure. This work presents experimental measurements of temperature distributions during polymerization in moulds of different sizes and at various experimental conditions. A mathematical model for the prediction of temporal and spatial temperature distribution during the polymerization of methacrylate-based monolithic columns is introduced. The polymerization is described by an unsteady-state heat conduction equation with the generation of heat related to the general kinetics of polymerization. Predictions from the mathematical model are in good agreement with the experimental measurements at different experimental conditions. A method for construction of large-volume monolithic columns is presented and an attempt is made to adopt the developed mathematical model in annular geometry.

Purchase full article

Full view

P. Milavec Žmak, H. Podgornik, J. Jančar, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1006 (2003) 195–205

Convective Interaction Media (CIM) columns are monolithic columns optimized for the separation of macromolecules. Some of them operate in the axial mode while others operate in the radial mode depending on the column size. In this work we tested the approach suggested by Yamamoto [Biotechnol. Bioeng., 48 (1995) 444] for transfer of gradient methods between columns of different size. A simplified equation for transfer was derived together with a criterion for its application. Separation was evaluated for a standard protein mixture and peroxidase enzymes present in fermentation broth. Salt and pH gradients were applied. Similar resolutions were obtained for each sample on all columns which demonstrates that the proposed approach can be successfully used for method scale-up on this type of column.

Purchase full article

Full view