On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2009

J. L. Ammerman, J. H. Aldstadt III

Microchim Acta (2009) 164:185-196

We describe the development and optimization of a sensitive and selective screening method for the measurement of trace levels of microcystins in surface waters. Several sample preparation techniques were compared, including solid-phase microextraction (SPME), particle-based solid-phase extraction (SPE), and monolith-based SPE. A flow-injection (FI) based approach employing a reversed-phase monolithic SPE column was found to be optimal. Quantification was performed by directly interfacing the FI-based SPE system to an electrospray ionization-mass spectrometer (ESI-MS). To more safely simulate peptidyl toxins such as the microcystins, a model peptide (i.e., angiotensin II) was used for method optimization. Sample loading flow rate and volume, eluent composition, and elution flow rate were optimized. Sample throughput was six samples per hour, a detection limit of 1.31 ng angiotensin II was demonstrated for a linear dynamic range from 1–1,000 ng and 3.4% relative standard deviation (n = 4, 100 ng sample). Sample volumes up to 1,000 ml of surface water could be loaded onto the monolithic SPE disk without exceeding the sorbent’s capacity. Unlike conventional particle-based SPE methods, the monolithic SPE disk does not need to be replaced between samples and could be used indefinitely. The FI-based SPE-ESI-MS method was successfully applied to the determination of microcystin-LR, the most common of the microcystins, in environmental samples and was demonstrated for the direct monitoring of chlorinated drinking water, with trends tracked over a period of eight months.

Purchase full article

Full view

K. Kovač, I. Gutierrez-Aguirre, M. Banjac, M. Peterka, M. Poljšak-Prijatelj, M. Ravnikar, J. Zimšek Mijovski, A. C. Schultze, P. Raspor

Journal of Virological Methods 162 (2009) 272–275

Human enteric viruses are detected frequently in various types of environmental water samples, such as irrigation water, wastewater, recreational water, ground or subsurface water and even drinking water, constituting a primary source of gastroenteritis or hepatitis outbreaks. Only a few, but still infective number of viral particles are normally present in water samples, therefore an efficient virus concentration procedure is essential prior to molecular detection of the viral nucleic acid. In this study, a novel chromatographic technology, Convective Interaction Media® (CIM) monolithic supports, were optimized and applied to the concentration of hepatitis A virus (HAV) and feline calicivirus (FCV), a surrogate of norovirus (NoV), from water samples. Two-step real-time RT-qPCR was used for quantitation of the virus concentration in the chromatographic fractions. Positively charged CIM QA (quaternary amine) monolithic columns were used for binding of HAV and FCV present in previously inoculated 1.5 l bottled water samples. Column bound viruses were eluted from the monolith using 1 M NaCl to a final volume of 15 ml. Elution volume was concentrated further by ultracentrifugation. When the CIM/ultracentrifugation method was compared with another concentration method employing positively charged membranes and ultrafiltration, the recovery of HAV was improved by approximately 20%.

Purchase full article

Full view

E. I. Trilisky, H. Koku, K. J. Czymmek, A. M. Lenhoff

Journal of Chromatography A, 1216 (2009) 6365–6376

Commercially available polymer-based monolithic and perfusive stationary phases were evaluated for their applicability in chromatography of biologics. Information on bed geometry, including that from electron microscopy (EM), was used to interpret and predict accessible volumes, binding capacities, and pressure drops. For preparative purification of biologics up to at least 7 nm in diameter, monoliths and perfusive resins are inferior to conventional stationary phases due to their low binding capacities (20–30 g/L for BSA). For larger biologics, up to several hundred nanometers in diameter, calculations from EM images predict a potential increase in binding capacity to nearly 100 g/L. The accessible volume for adenovirus calculated from the EM images matched the experimental value. While the pores of perfusive resins are essentially inaccessible to adenovirus under binding conditions, under non-adsorbing conditions the accessible intrabead porosity is almost as large as the interbead porosity. Modeling of breakthrough curves showed that the experimentally observed slow approach to full saturation can be explained by the distribution of pore sizes.

Purchase full article

Full view

M. R. Etzel, W. T. Riordan

Jorunal of Chromatography A 1216 (2009) 2621-2624

Clearance of biological impurities is an essential part of the manufacture of biotechnology-derived products such as monoclonal antibodies (mAbs). Salt is required during manufacture to solubilize the mAb product and stabilize it against aggregation, but salt can be a problem later during impurity clearance operations. In this work, the use of a traditional quaternary amine (Q) monolith, and a new salt-tolerant monolith were evaluated for the clearance of pathogenic impurities including viruses, DNA, and host-cell protein (HCP). The impact of flow rate, salt concentration, and presence of mixtures of impurities in the feed stream were evaluated. Both monoliths cleared DNA to the limit of detection at all salt concentrations, and both cleared virus and HCP equally well at no salt. At intermediate salt, clearance of HCP was greater for the salt-tolerant monolith, and only the salt-tolerant monolith cleared virus at elevated salt. In conclusion, monoliths successfully trapped impurities such as DNA, host-cell protein, and viruses, and at flow rates far greater than traditional chromatography columns packed with beads.

Purchase full article

Full view

R. J. Whitfield, S. E. Battom, M. Barut, D. E. Gilham, P. D. Ball

Journal of Chromatography A, 1216 (2009) 2725-2729

To support effective process development there is a requirement for rapid analytical methods that can identify and quantitate adenoviral particles throughout the manufacturing process, from cellular lysate through to purified adenovirus. An anion-exchange high-performance liquid chromatography method for the analysis of adenovirus type 5 (Ad5) particles has been developed using a novel quaternary amine monolithic column (Bio-Monolith QA, Agilent). The developed method separates intact Ad5 from contaminating proteins and DNA, thus allowing analysis of non-purified samples during process development. Regeneration conditions were incorporated to extend the functional life of the column. Once developed, the method was qualified according to performance criteria of repeatability, intermediate precision and linearity. The linear working range of analysis was established between 7.5 × 108 to at least 2.4 × 1010 viral particles (3 × 1010 to 9.6 × 1011 viral particles/mL), with a correlation coefficient of 0.9992. Relative standard deviations (RSDs) for intra- and inter-day repeatability and precision for retention time and peak area were less than 1 and 2.5%, respectively.

Purchase full article

Full view

M. C. Cheeks, N. Kamal, A. Sorrel, D. Darling, F. Farzaneh, N. K. H. Slater

Journal of Chromatography A, 1216 (2009) 2705–2711

Histidine-tagged lentiviral vectors were separated from crude cell culture supernatant using labscale monolithic adsorbents by immobilized metal affinity chromatography. The capture capacity, concentration factor, purification factor, and elution efficiency of a supermacroporous cryogel monolith were evaluated against the Sartorius BIA Separations convective interaction media (CIM) disc, which is a commercial macroporous monolith. The morphology of the polymeric cryogel material was characterised by scanning electron microscopy. Iminodiacetic acid was used as the metal chelating ligand in both monoliths and the chelating capacity for metal ions was found to be comparable. The CIM-IDA-Ni2+ adsorbent had the greatest capture capacity (6.7 × 108 IU/ml of adsorbent), concentration factor (1.3-fold), and elution efficiency (69%). Advantages of the cryogel monoliths included rapid, low pressure processing as well low levels of protein and DNA in the final purified vector preparations.

Purchase full article

Full view

I. Gutiérrez-Aguirre, M. Banjac, A. Steyer, M. Poljšak-Prijatelj, M. Peterka, A. Štrancar, M. Ravnikar

Journal of Chromatography A, 1216 (2009) 2700–2704

Rotaviruses are the leading cause of diarrhoea in infants around the globe and, under certain conditions they can be present in drinking water sources and systems. Ingestion of 10–100 viral particles is enough to cause disease, emphasizing the need for sensitive diagnostic methods. In this study we have optimized the concentration of rotavirus particles using methacrylate monolithic chromatographic supports. Different surface chemistries and mobile phases were tested. A strong anion exchanger and phosphate buffer (pH 7) resulted in the highest recoveries after elution of the bound virus with 1 M NaCl. Using this approach, rotavirus particles spiked in 1 l volumes of tap or river water were efficiently concentrated. The developed concentration method in combination with a real time quantitative polymerase chain reaction assay detected rotavirus concentrations as low as 100 rotavirus particles/ml.

Purchase full article

Full view

2008

P. Gagnon

MSS2008

When monoclonal antibodies were first beginning to be commercialized, expression levels over 100 mg/L were considered outstanding, and cell culture was viewed as the bottleneck in manufacturing productivity. Antibody expression levels now commonly exceed 1 g/L and reports of 10 and 15 g/L have been recently announced. Downstream processing is now considered the bottleneck.

In one sense, the bottleneck is artificial. Cell culture production takes about two weeks (not counting preparation of seed stock) and purification takes about a week. In another sense, the bottleneck is real, and a genuine concern. Process time for the protein A capture step from 20,000 L of cell culture supernatant (CCS) commonly requires 72-96 hours. This represents multiple cycles. The long hold time for IgG produced in the early cycles increases the risk of degradation by proteolysis, deamidation, etc. It also increases the risk of contamination.

Read full presentation

Full view

V. Frankovič, A. Podgornik, N. Lendero Krajnc, F. Smrekar, P. Krajnc, A. Štrancar

Journal of Chromatography A, 1207 (2008) 84–93(2008) 84 – 93

A weak ion-exchange grafted methacrylate monolith was prepared by grafting a methacrylate monolith with glycidyl methacrylate and subsequently modifying the epoxy groups with diethylamine. The thickness of the grafted layer was determined by measuring permeability and found to be approximately 90 nm. The effects of different buffer solutions on the pressure drop were examined and indicated the influence of pH on the permeability of the grafted monolith. Protein separation and binding capacity (BC) were found to be flow-unaffected up to a linear velocity of 280 cm/h. A comparison of the BC for the non-grafted and grafted monolith was performed using β-lactoglobulin, bovine serum albumin (BSA), thyroglobulin, and plasmid DNA (pDNA). It was found that the grafted monolith exhibited 2- to 3.5-fold higher capacities (as compared to non-grafted monoliths) in all cases reaching values of 105, 80, 71, and 17 mg/ml, respectively. It was determined that the maximum pDNA capacity was reached using 0.1 M NaCl in the loading buffer. Recovery was comparable and no degradation of the supercoiled pDNA form was detected. Protein z-factors were equal for the non-grafted and grafted monolith indicating that the same number of binding sites are available although elution from the grafted monolith occurred at higher ionic strengths. The grafted monolith exhibited lower efficiency than the non-grafted ones. However, the baseline separation of pDNA from RNA and other impurities was achieved from a real sample.

Purchase full article

Full view

A. Jungbauer, R. Hahn

Journal of Chromatography A, 1184 (2008) 62–79(2008) 62 – 79

Monoliths are considered as the fourth-generation chromatography material. Their use for preparative separation of biomolecules has been evolved over the past decade. Monolithic columns up to 8 L in size are already commercially available for separation of large biomolecules such as proteins, protein aggregates, plasmid DNA, and viruses. These applications leverage monoliths’ inherent properties, such as fast operation and high capacity for large biomolecules. The height equivalent to a theoretical plate (HETP) and dynamic binding capacity do not change with velocity. This is explained by the convective transport through the channels with a diameter of above 1000 nm and has been experimentally verified and also supported by theoretical analyses. Despite low absolute surface area, these large channels provide enough area for adsorption of these large biomolecules, which cannot penetrate into conventional chromatography media designed for protein separation. Monoliths for preparative separations are mainly cast as polymethacrylate or polyacrylamide blocks and have been functionalized as ion exchangers or hydrophobic interaction chromatography media. So-called cryogels have channels more than 30 μm wide, enabling efficient processing of suspensions or even cell-chromatography. This review discusses the pressure drop characteristics, mass transfer properties, scale-up, and applications of monoliths in the context of conventional chromatography media.

Purchase full article

Full view

E. S. Sinitsyna, E. N. Vlasova, E. G. Vlakh, T. B. Tennikova

Russian Journal of Applied Chemistry, 2008, Vol. 81, No. 8, pp. 1403–1409

Copolymers containing aldehyde, succinimidyl carbonate, and imidazolecarbamate groups were prepared by polymer-analogous transformations of epoxy groups of a macroporous monolithic polymeric support derived from glycidyl methacrylate and ethylene glycol dimethacyrlate. The effect of certain parameters on the course of the copolymer modification and immobilization of a protein on the surface of the polymeric support was studied. The possibility of using the matrices obtained for development of biorecognizing systems was examined.

Purchase full article

Full view

M. Barut, A. Podgornik, L. Urbas, B. Gabor, P. Brne, J. Vidič, S. Plevčak, A. Štrancar

J. Sep. Sci. 2008, 31, 1867 – 1880

This review describes the novel chromatography stationary phase – a porous monolithic methacrylate-based polymer – in terms of the design of the columns and some of the features that make these columns attractive for the purification of large biomolecules. We first start with a brief summary of the characteristics of these large molecules (more precisely large proteins like immunoglobulins G and M, plasmid deoxyribonucleic acid (DNA), and viral particles), and a list of some of the problems that were encountered during the development of efficient purification processes. We then briefly describe the structure of the methacrylate-based monolith and emphasize the features which make them more than suitable for dealing with large entities. The highly efficient structure on a small scale can be transferred to a large scale without the need of making column modifications, and the various approaches of how this is accomplished are briefly presented in this paper. This is followed by presenting some of the examples from the bioprocess development schemes, where the implementation of the methacrylate-based monolithic columns has resulted in a very efficient and productive process. Following this, we move back to the analytical scale and demonstrate the efficiency of the monolithic column – where the mass transfer between the stationary and mobile phase is greatly enhanced – for the in-process and final control of the new therapeutics. The combination of an efficient structure and the appropriate hardware results in separations of proteins with residence time less than 0.1 s.

Purchase full article

Full view

F. Smrekar, M. Ciringer, M. Peterka, A. Podgornik, A. Štrancar

Journal of Chromatography B, (2007)

Phages are gaining importance due to their wide usage. In this work strong anion exchange monolithic chromatographic column was used for single step phage purification. Most of the proteins and DNA were removed and recovery of approximately 70% of infective virus was reproducibly achieved. 30 ml of phage sample was purified in around 10 min.

Purchase full article

Full view

I. V. Kalashnikova, N. D. Ivanova, T. B. Tennikova

Russian Journal of Applied Chemistry, 2008, Vol. 81, No. 5, pp. 867-873

A simple virus-cell complementary model system can be obtained using polymer-analogous reactions of the epoxy groups of glycidyl methacrylate-ethylene glycol dimethacrylate monolithic macroporous polymeric support and of the carboxy groups of styrene-methyl methacrylate polymeric nanospheres. The effect of thus designed microenvironment on the affinity binding parameters of virus-mimicking nanoparticles with the functionalized sorbent surface is studied by high-performance monolithic disk affinity chromatography.

Purchase full article

Full view

S. Likić, G. Rusak, M. Krajačić

Journal of Chromatography A, 1189 (2008) 451–455

High-performance liquid chromatography was developed for further separation of double-stranded (ds) RNAs obtained by CF-11 cellulose chromatography from plants infected with satellite associated cucumber mosaic virus. Fractions separated by monolithic polymer column, especially applicable for nucleic acid analyses, were identified electrophoretically and confirmed with a polymerase chain reaction test. Once standardized, the method has revealed clear evidence of satellite presence without precipitation and electrophoresis. According to demonstrated sensitivity, its application in the preliminary diagnostics of field samples is also predictable. Principally, it can be used as a powerful preparative approach resulting in highly pure satellite dsRNA for further analyses.

Purchase full article

Full view

2007

R. Hahn, A. Tscheliessnig, P. Bauerhansl, A. Jungbauer

J. Biochem. Biophys. Methods 70 (2007) 87–94

Monolithic media have found widespread use as excellent tools for fast analytical separations of small molecules, proteins, pDNA and viruses. Polymethacrylate monoliths with large channels are attractive for capturing large molecules, like immunoglobulins, DNA, and viruses. For preparative purposes, these monoliths are operated in radial flow mode. Band spreading in monoliths is extremely low and mostly dominated by the contribution of extra column effects. The model used here had a single axial dispersion coefficient which lumps together extra column effects and the intrinsic band spreading of the monolithic material to characterize the adsorption of proteins and pDNA on polymethacrylate ion-exchange monoliths. Due to the fact that the performance of the monolith was unaffected by the velocity within the applied range, and due to highly favourable adsorption isotherms, a constant pattern model could be applied to predict preparative runs on radial flow units assuming axial flow for modelling.

Purchase full article

Full view

R. Skudas, B. A. Grimes, E. Machtejevas, V. Kudirkaite, O. Kornysova, T. P. Hennessy, D. Lubda, K. K. Unger

Journal of Chromatography A, 1144 (2007) 72-84(2007) 72 - 84

In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of ∼25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18 < C8 < C4. The resolution of proteins and peptides by reversed-phase gradient liquid chromatography on n-octadecyl, n-octyl, and n-butyl bonded monolithic silica columns is optimized. The results obtained imply the use of acetonitrile concentration gradient up to 75% for n-octadecyl and n-octyl bonded monolithic silica columns, and the use of acetonitrile concentration gradient up to 85% for n-butyl bonded monolithic silica columns. With the respect to the gradient times and flow rates, the optimum conditions are the best with n-octyl and n-butyl bonded monolithic silica columns, where the range of optimum gradient times is up to ∼30 min and mobile phase flow rates in the range of 0.5–1 ml/min. Consequently, the best performance towards peak resolution is obtained with n-octyl bonded monolithic silica column with the respect to low concentration of organic phase gradient, fast separations and low solvent consumptions due to low flow rates.

Purchase full article

Full view

J. Vidič, A. Podgornik, J. Jančar, V. Frankovič, B. Košir, N. Lendero, K. Čuček, M. Krajnc, A. Štrancar

Journal of Chromatography A, 1144 (2007) 63–71(2007) 63 – 71

Chemical and chromatographic stability of methacrylate-based monolithic columns bearing 3-N,N-diethylamino-2-hydroxypropyl (DEAE) and quarternary amine (QA) groups was studied. The leakage products from both monolithic columns were determined and the leakage of amines has been quantified in alkali solutions. Monolithic columns bearing QA functional groups being exposed to 1 M sodium hydroxide solution for up to 3 months caused reduction of ion-exchange groups for approximately 12%, while for DEAE monolithic columns was only around 3% in 1 year. In 0.1 M NaOH and 20% ethanol degradation was significantly lower. The main leaking compound from DEAE monolith was found to be 3-(diethylamino)-1,2-propanediol and 2,3-dihydroxypropyltrimethylammonium salt for QA monolith. During repeated 50 cleaning-in-place (CIP) cycles, no changes in chromatographic properties were detected.

Purchase full article

Full view

B. A. Grimes, R. Skudas, K. K. Unger, D. Lubda

Journal of Chromatography A, 1144 (2007) 14-29(2007) 14-29

In this work, a parallel pore model (PPM) and a pore network model (PNM) are developed to provide a state-of-art method for the calculation of several characteristic pore structural parameters from inverse size-exclusion chromatography (ISEC) experiments. The proposed PPM and PNM could be applicable to both monoliths and columns packed with porous particles. The PPM and PNM proposed in this work are able to predict the existence of the second inflection point in the experimental exclusion curve that has been observed for monolithic materials by accounting for volume partitioning of the polymer standards in the macropores of the column. The appearance and prominence of the second inflection point in the exclusion curve is determined to depend strongly on the void fraction of the macropores (flow-through pores), (b) the nominal diameter of the macropores, and (c) the radius of gyration of the largest polymer standard employed in the determination of the experimental ISEC exclusion curve. The conditions that dictate the appearance and prominence of the second inflection point in the exclusion curve are presented. The proposed models are applied to experimentally measured ISEC exclusion curves of six silica monoliths having different macropore and mesopore diameters. The PPM and PNM proposed in this work are able to determine the void fractions of the macropores and silica skeleton, the pore connectivity of the mesopores, as well as the pore number distribution (PND) and pore volume distribution (PVD) of the mesopores. The results indicate that the mesoporous structure of all materials studied is well connected as evidenced by the similarities between the PVDs calculated with the PPM and the PNM, and by the high pore connectivity values obtained from the PNM. Due to the fact that the proposed models can predict the existence of the second inflection point in the exclusion curves, the proposed models could be more applicable than other models for ISEC characterization of chromatographic columns with small diameter macropores (interstitial pores) and/or large macropore (interstitial pore) void fractions. It should be noted that the PNM can always be applied without the use of the PPM, since the PPM is an idealization that considers an infinitely connected porous medium and for materials having a low (<6) pore connectivity the PPM would force the PVD to a lower average diameter and larger distribution width as opposed to properly accounting for the network effects present in the real porous medium.

Purchase full article

Full view

I. Junkar, T. Koloini, P. Krajnc, D. Nemec, A. Podgornik, A. Štrancar

Journal of Chromatography A, 1144 (2007) 48-54(2007) 48-54

Today, monoliths are well-accepted chromatographic stationary phases due to several advantageous properties in comparison with conventional chromatographic supports. A number of different types of monoliths have already been described, among them recently a poly(high internal phase emulsion) (PolyHIPE) type of chromatographic monoliths. Due to their particular structure, we investigated the possibility of implementing different mathematical models to predict pressure drop on PolyHIPE monoliths. It was found that the experimental results of pressure drop on PolyHIPE monoliths can best be described by employing the representative unit cell (RUC) model, which was originally derived for the prediction of pressure drop on catalytic foams. Models intended for the description of particulate beds and silica monoliths were not as accurate. The results of this study indicate that the PolyHIPE structure under given experimental condition is, from a hydrodynamic point of view, to some extent similar to foam structures, though any extrapolation of these results may not provide useful predictions of pressure versus flow relations and further experiments are required.

Purchase full article

Full view