On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2004

D. Ren, N. A. Penner, B. E. Slentz, H. D. Inerowicz, M. Rybalko, F. E. Regnier

Journal of Chromatography A, 1031 (2004) 87–92(2004) 87–92

Immobilized copper(II) affinity chromatography [Cu(II)-immobilized metal affinity chromatography (IMAC)] has been used in proteomics to simplify sample mixtures by selecting histidine-containing peptides from proteolytic digests. This paper examines the specificity of four different support materials with an iminodiacetic acid (IDA) stationary phase in the selection of only histidine-containing peptides in the single step capture-release mode. Three of the sorbents examined were commercially available: HiTrap Chelating HP (agarose), TSK Chelate-5PW, and Poros 20MC. IDA was also immobilized on CIM discs (monolithic glycidylmethacrylate-ethylene dimethacrylate). Tryptic digests of transferrin and β-galactosidase were used as model samples to evaluate these sorbents. It was found that among the examined matrices, the TSK Chelate-5PW sorbent bound histidine-containing peptides the strongest, while Poros matrix was found to have a high degree of non-specific bindings. Agarose-based columns showed relatively high selectivity and specificity.

Purchase full article

Full view

E. G. Vlakh, A. Tappe, C. Kasper, T. B. Tennikova

Journal of Chromatography B, 810 (2004) 15–23

Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein’s denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA–EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.

Purchase full article

Full view

E. G. Vlakh, A. Tappe, C. Kasper, T. B. Tennikova

Journal of Chromatography B, 810 (2004) 15–23

Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein’s denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA–EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.

Purchase full article

Full view

E. G. Vlakh, A. Tappe, C. Kasper, T. B. Tennikova

Journal of Chromatography B, 810 (2004) 15–23

Plasminogen activators are the proteases which convert plasminogen into plasmin dissolving, in its turn, the major component of blood clots, fibrin. They are extremely useful in heart attack therapy. Modern and most appropriate way of scaled up production of these valuable proteins is gene engineering. In this case, a separation and a purification of target product become the important steps of the whole process. Recently developed affinity chromatography on short monolithic columns seems to be a very attractive method for these purposes. High speed of a process prevents the protein’s denaturation due to temperature or/and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows considering only biospecific complexing as time limiting step. Specificity of several synthetic peptides to plasminogen activators have been studied by affinity chromatography on short monolithic columns. Peptide ligands were synthesized by conventional solid phase peptide synthesis (SPPS). The immobilization procedure was carried out as a one step process at static conditions. The results of quantitative evaluation of such affinity interactions were compared with those established for plasminogen that is the natural affinity counterpart to both proteases. Additionally, some of investigated peptides were synthesized directly on GMA–EDMA disks and their affinity properties were compared with those established for the case of immobilized ligands. The possibility of using of synthetic peptidyl ligands for plasminogen activators isolation from native cell supernatant and model protein mixtures has been demonstrated.

Purchase full article

Full view

E. Vlakh, N. Ostryanina, A. Jungbauer, T. Tennikova

Journal of Biotechnology 107 (2004) 275–284

Present report demonstrates the examples of practical application of sorbents obtained via direct solid phase peptide synthesis (SPPS) on GMA-EDMA monoliths (CIM® Disks, BIA Separations, d.o.o., Ljubljana, Slovenia). Several peptidyl complementary to recombinant tissue plasminogen activator (t-PA) ligands have been synthesized using Fmoc-chemistry. This approach affords to get directly sorbents for affinity chromatography avoiding a cleavage of synthesized peptides from a carrier following by their isolation, analysis and purification. The affinity binding parameters were found from experimental frontal analysis data. The results have been compared with those established for CIM® affinity sorbents obtained by immobilization of the same but preliminarily synthesized on convenient resin, cleaved and purified ligands on the disks using one step reaction with epoxy groups of monolithic material. It has been shown that the affinity constants of these two kinds of sorbent did not vary significantly. Directly obtained affinity sorbents have been used for fast and efficient on-line analysis as well as semi-preparative isolation of recombinant t-PA from crude cellular supernatant.

Purchase full article

Full view

2003

K. Branović, A. Buchacher, M. Barut, A. Štrancar, D. Josić

Journal of Chromatography B, 790 (2003) 175–182

It has been shown in a previous study that monolithic columns can be used for downstream processing of different concentrates of clotting factor IX [K. Branović et al., J. Chromatogr. A 903 (2000) 21]. This paper demonstrates that such supports are useful tools also at an early stage of the purification process of factor IX from human plasma. Starting with the eluate after solid-phase extraction with DEAE-Sephadex, the use of monolithic columns has allowed much better purification than that achieved with conventional anion-exchange supports. The period of time required for separation is also much reduced. In up-scaling experiments, separations are carried out with 8, 80 and 500 ml columns. A volume of 1830 ml of DEAE-Sephadex eluate, containing a total of 27.6 g of protein and 48.500 IU of factor IX is applied to the 500 ml monolithic column. This corresponds to a separation on a pilot scale. The results of this separation after up-scaling are comparable to those obtained with the 8 ml column on a laboratory scale.

Purchase full article

Full view

I. Mihelič, A. Podgornik, T. Koloini

Journal of Chromatography A, 987 (2003) 159–168

This work investigates the influence of temperature on the binding capacity of bovine serum albumin (BSA), soybean trypsin inhibitor and l-glutamic acid to a CIM® (DEAE) weak anion-exchange disk monolithic column. The binding capacity was determined experimentally under dynamic conditions using frontal analysis. The effect on the dynamic binding capacity of dimers present in the BSA solution has been evaluated and a closed-loop frontal analysis was used to determine the equilibrium binding capacities. The binding capacity for both BSA and soybean trypsin inhibitor increased with increasing temperature. In the case of l-glutamic acid, an increase in the binding capacity was observed with temperature up to 20 °C. A further increase in temperature caused a decrease of the dynamic binding capacity.

Purchase full article

Full view

R. Hahn, E. Berger, K. Pflegerl, A. Jungbauer

Anal. Chem. 2003, 75, 543-548

When small ligands are immobilized onto a porous chromatography medium, only a limited number of binding sites contributes to the interaction with the target molecule. The main part of the ligand molecules is distributed on sites that are not accessible for the target protein due to steric hindrance. To direct the ligand into a well-accessible position, the ligand was conjugated to a large molecule that acted as a placeholder during the immobilization step. Then the placeholder molecule was cleaved off and washed out. Two linear peptides with affinity for lysozyme and human blood coagulation factor VIII, respectively, were studied as model systems. The protected peptide ligand was covalently linked to a 20-kDa poly(ethylene glycol) molecule containing an acid-labile linker. After selective deprotection of the peptide and purification, immobilization of this conjugate on a preactivated chromatography matrix was performed alternatively through the free N-terminus, the ε-amino group of lysine, or the sulfohydryl group of cysteine. After the immobilization reaction, the spacer molecule and remaining protecting groups were cleaved off and the gels were tested by affinity chromatography. This novel immobilization technique substantially increased the binding capacity and the ligand utilization for the target protein, and site-specific immobilization could be demonstrated.

Purchase full article

Full view

2002

K. Pflegerl, A. Podgornik, E. Berger, A. Jungbauer

J. Comb. Chem. 2002, 4, 33-37

Solid-phase peptide synthesis was performed on glycidyle methacrylate-co-ethylene dimethacrylate monoliths using Fmoc chemistry. The native epoxy groups were amino-functionalized by reaction with ethylenediamine or ammonia ions. A peptide directed against human blood coagulation factor VIII was synthesized as a model peptide. Amino acid analysis revealed the correct amino acid ratio as present in the sequence. The ligand density of 5 μmol/mL was equal to that achieved with conventional peptide immobilization via epoxy groups. These supports were directly used as peptide affinity chromatography matrixes. The functionality of the CIM monolithic supports was proven by affinity chromatography of factor VIII. The ammonia-functionalized support performed with low hydrophobicity and did not show unspecific adsorption of proteins.

Purchase full article

Full view

K. Branović, G. Lattner, M. Barut, A. Štrancar, D. Josić, A. Buchacher

Journal of Immunological Methods 9211 (2002) 20;271(1-2):47-58

Transferrin and albumin are often present in immunoglobulin G (IgG) concentrates and are considered as impurities. Therefore, it is important to determine their concentration in order to obtain a well-characterized biological product. Here, we describe their determination based on conjoint liquid chromatography (CLC). The established method combines two different chromatographic modes in one step: affinity and ion-exchange chromatography (IEC) combined in one column. Therefore, two CIM Protein G and one CIM quaternary amine (QA) monolithic disks were placed in series in one housing forming a CLC monolithic column. Binding conditions were optimized in a way that immunoglobulins were captured on the CIM Protein G disks, while transferrin and albumin were bound on the CIM QA disks. Subsequently, transferrin and albumin were eluted separately by a stepwise gradient with sodium chloride, whereas immunoglobulins were released from the Protein G ligands by applying low pH. A complete separation of all three proteins was achieved in less than 5 min. The method permits the quantification of albumin and transferrin in IgG concentrates and has been successfully validated.

Purchase full article

Full view

T. V. Gupalova, O. V. Lojkina, V. G. Palagnuk, A. A. Totolian, T.B. Tennikova

Journal of Chromatography A, 949 (2002) 185–193

The recombinantly produced different forms of protein G, namely monofunctional immunoglobulin G (IgG) binding, monofunctional serum albumin (SA) binding and bifunctional IgG/SA binding proteins G, are compared with respect to their specific affinities to blood IgG and SA. The affinity mode of the recently developed high-performance monolithic disk chromatography has been used for fast quantitative investigations. Using single affinity disks as well as two discs stacked into one separation unit, one order of magnitude in adsorption capacities for IgG and SA were found both for monofunctional and bifunctional protein G forms used as specific affinity ligands. However, despite the adsorption difference observed, the measured dissociation constants of the affinity complexes seemed to be very close. The analytical procedure developed can be realized within a couple of minutes. Up-scaling of the developed technology was carried out using another type of monolithic materials, i.e. CIM® affinity tubes.

Purchase full article

Full view

N. D. Ostryanina, G. P. Vlasov, T. B. Tennikova

Journal of Chromatography A, 949 (2002) 163–171

High-performance monolithic disk chromatography (HPMDC), including its affinity mode, is a very efficient method for fast separations of biological molecules of different sizes and shapes. In this paper, protein and peptide ligands, immobilized on the inner surface of thin, monolithic supports (Convective Interaction Media or CIM® disks), have been used to develop methods for fast, quantitative affinity fractionation of pools of polyclonal antibodies from blood sera of rabbits, immunized with complex protein–peptide conjugates. The combination of several disks with different affinity functionalities in the same cartridge enables the separation of different antibodies to be achieved within a few minutes. The apparent dissociation constants of affinity complexes were determined by frontal analysis. Variation of elution flow rate over a broad range does not affect the affinity separation characteristics. Indifferent synthetic peptides used as biocompatible spacers do not change the affinity properties of the ligands. The highly reproducible results of immunoaffinity HPMDC are compared with data obtained by widely used enzyme-linked immunosorbent assay.

Purchase full article

Full view

K. Pflegerl,A. Podgornik, E. Berger, A. Jungbauer

J. Comb. Chem. 2002, 4, 33-37

Solid-phase peptide synthesis was performed on glycidyle methacrylate-co-ethylene dimethacrylate monoliths using Fmoc chemistry. The native epoxy groups were amino-functionalized by reaction with ethylenediamine or ammonia ions. A peptide directed against human blood coagulation factor VIII was synthesized as a model peptide. Amino acid analysis revealed the correct amino acid ratio as present in the sequence. The ligand density of 5 μmol/mL was equal to that achieved with conventional peptide immobilization via epoxy groups. These supports were directly used as peptide affinity chromatography matrixes. The functionality of the CIM monolithic supports was proven by affinity chromatography of factor VIII. The ammonia-functionalized support performed with low hydrophobicity and did not show unspecific adsorption of proteins.

Purchase full article

Full view

N. D. Ostryanina, G. P. Vlasov, T. B. Tennikova

Journal of Chromatography A, 949 (2002) 163–171

High-performance monolithic disk chromatography (HPMDC), including its affinity mode, is a very efficient method for fast separations of biological molecules of different sizes and shapes. In this paper, protein and peptide ligands, immobilized on the inner surface of thin, monolithic supports (Convective Interaction Media or CIM® disks), have been used to develop methods for fast, quantitative affinity fractionation of pools of polyclonal antibodies from blood sera of rabbits, immunized with complex protein–peptide conjugates. The combination of several disks with different affinity functionalities in the same cartridge enables the separation of different antibodies to be achieved within a few minutes. The apparent dissociation constants of affinity complexes were determined by frontal analysis. Variation of elution flow rate over a broad range does not affect the affinity separation characteristics. Indifferent synthetic peptides used as biocompatible spacers do not change the affinity properties of the ligands. The highly reproducible results of immunoaffinity HPMDC are compared with data obtained by widely used enzyme-linked immunosorbent assay.

Purchase full article

Full view

2001

R. Hahn, A. Podgornik, M. Merhar, E. Schallaun, A. Jungbauer

Anal. Chem. 2001, 73, 5126-5132

An affinity monolith with a novel immobilization strategy was developed leading to a tailored pore structure. Hereby the ligand is conjugated to one of the monomers of the polymerization mixture prior to polymerization. After the polymerization, a monolithic structure was obtained either ready to use for affinity chromatography or ready for coupling of additional ligand to further increase the binding capacity. The model ligand, a peptide directed against lysozyme, was conjugated to glycidyl methacrylate prior to the polymerization. With this conjugate, glycidyl methacrylate, and ethylene dimethacrylate, a monolith was formed and tested with lysozyme. A better ligand presentation was achieved indicated by the higher affinity constant compared to a conventional sorbent.

Purchase full article

Full view

2000

K. Amatschek, R. Necina, R. Hahn, E. Schallaun, H. Schwinn, D. Josić, A. Jungbauer

Journal of Separation science, 23 (2000) 47-58

FVIII is a very complex molecule of great therapeutic significance. It is purified by a sequence of chromatographic steps including immunoaffinity chromatography. A peptide affinity chromatography method has been developed using peptides derived from a combinatorial library. Spot technology using cellulose sheets has been applied for this purpose. The dual positional scanning strategy was used for identification of the amino acids in random positions. Approximately 5000 possible candidates found in the first screening round were reduced to a panel of 36. Six candidates have been selected empirically. Five peptides seem to be directed against the light chain of FVIII, one peptide seems to be directed against the heavy chain. The peptides have been immobilized on conventional beaded material and CIM polymethacrylate monoliths. Much better performance with respect to capacity and selectivity has been observed with the monolithic material. Exposure of the ligand and its ensuing accessibility are responsible for these properties.

Purchase full article

Full view

L. G. Berruex, R. Freitag, T. B. Tennikova

Journal of Pharmaceutical and Biomedical Analysis 24 (2000) 95–104

A novel biochromatographic principle is introduced taking the quantitative analysis of affinity interactions between antibodies and immobilized group specific ligands (protein A, G, and L) as example. The name high performance monolith affinity chromatography (HPMAC) is proposed for this technique. HPMAC uses rigid, macroporous monoliths, so-called convective interaction media (CIM™)-disks, as stationary phase. An optimized procedure is described for the covalent immobilization of the group specific affinity ligands to such disks. The binding of polyclonal bovine IgG and a recombinant human antibody (type IgG1-κ) to all affinity disks is discussed. An essential feature of HPMAC is its compatibility to unusually high mobile phase flow rates (>4 ml/min). Chromatographic experiments are thus completed within seconds without significant loss in binding capacity and retentive power. This makes HPMAC a promising tool for applications in fast process monitoring or screening. As an example for the former, the direct quantitative isolation of recombinant antibodies from serum-free culture supernatant is demonstrated.

Purchase full article

Full view

L. G. Berruex, R. Freitag, T. B. Tennikova

Journal of Pharmaceutical and Biomedical Analysis 24 (2000) 95–104

A novel biochromatographic principle is introduced taking the quantitative analysis of affinity interactions between antibodies and immobilized group specific ligands (protein A, G, and L) as example. The name high performance monolith affinity chromatography (HPMAC) is proposed for this technique. HPMAC uses rigid, macroporous monoliths, so-called convective interaction media (CIM™)-disks, as stationary phase. An optimized procedure is described for the covalent immobilization of the group specific affinity ligands to such disks. The binding of polyclonal bovine IgG and a recombinant human antibody (type IgG1-κ) to all affinity disks is discussed. An essential feature of HPMAC is its compatibility to unusually high mobile phase flow rates (>4 ml/min). Chromatographic experiments are thus completed within seconds without significant loss in binding capacity and retentive power. This makes HPMAC a promising tool for applications in fast process monitoring or screening. As an example for the former, the direct quantitative isolation of recombinant antibodies from serum-free culture supernatant is demonstrated.

Purchase full article

Full view

1998

C. Kasper, L. Meringova, R. Freitag, T. Tennikova

Journal of Chromatography A, 798 (1998) 65-72

A fast affinity method for the semi-preparative isolation of recombinant Protein G from E. coli cell lysate is proposed. Rigid, macroporous affinity discs based on a glycidyl methacrylate–co-ethylene dimethacrylate polymer were used as chromatographic supports. The specific ligands (here human immunoglobulin G, hIgG) were immobilized by the one-step reaction between native epoxy groups of the polymer surface and ϵ-amino groups of the IgG molecules. No intermediate spacer was necessary to reach full biological activity of the ligand. The globular affinity ligands are located directly on the pore wall surface and are thereby freely accessible to target molecules (here Protein G) migrating with the mobile phase through the pores. It is shown that the conditions chosen for the hIgG immobilization do not involve an active site of the protein and thus do not bias the formation of the affinity complex. Chromatographically determined constants of dissociation of hIgG–Protein G affinity complexes confirm the high selectivity of this separation method. Two different aspects of the affinity separation are discussed, which differ mostly in terms of scale. In disc chromatography, high volumetric flow velocities are possible because of the small backpressure. Since in addition the mass transfer is more efficient, it becomes possible to achieve very short analysis times. The discs proposed can be used in a single-step enrichment of Protein G from lysates of non-pathogenic E. coli. Gel electrophoresis data are used to demonstrate the high degree of purity achieved for the final product.

Purchase full article

Full view

D. Josić, H. Schwinn, A. Štrancar, A. Podgornik, M. Barut, Y. P. Lim, M. Vodopivec

Journal of Chromatography A, 803 (1998) 61–71

Different ligands with high molecular masses are immobilized on compact, porous separation units and used for affinity chromatography. In subsequent experiments different enzymes are immobilized and used for converting substrates with low and high molecular masses. Disk or tube with immobilized concanavalin A (ConA) are used as model systems for lectin affinity chromatography. The enzyme glucose oxidase is used as a standard protein to test the ConA units. Subsequently glycoproteins from plasma membranes of rat liver are separated, using units with immobilized ConA. The enzyme dipeptidyl peptidase IV, which is used as a model protein in the experiments, is enriched about 40-fold in a single step, with a yield of over 90%. The results are only slightly better than those obtained with ConA when it is immobilized on bulk supports. The important improvement lies in the reduction of separation time to only 1 h. Experiments concerning the isolation of monoclonal antibodies against clotting factor VIII (FVIII) are carried out on disks, combining anion-exchange chromatography and protein A affinity chromatography as a model for multidimensional chromatography. Both IgG (bound to the protein A disk) and accompanying proteins (bound to the anion-exchange disk) from mouse ascites fluid are retarded and eluted separately. With the immobilized enzymes invertase and glucose oxidase (GOX) the corresponding substrates with low molecular masses, saccharose and glucose, are converted. It is shown that the amount of immobilized enzyme and the concentration of the substrate are responsible for the extent of the conversion, whereas the flow-rates used in the experiments have no effect at all. The influence of immobilization chemistry was investigated with GOX. Indirect immobilization with ConA as spacer proved to be the best alternative. With trypsin, immobilized on a disk, substrates with high molecular masses are digested in flow-through. For optimal digestion the proteins have to be denatured in the buffer for sodium dodecyl sulfate–polyacrlyamide gel electrophoresis prior to application. In contrast to the conversion of substrates with low molecular masses, flow-rates play an important part in conversion of substrates with high molecular masses. With lower flow-rates a higher degree of digestion is achieved.

Purchase full article

Full view