On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2024

Marta Leban, Tina Vodopivec Seravalli, Martina Hauer, Ernst Böhm, Nina Mencin, Sandra Potušek, Andrej Thompson, Jurij Trontelj, Aleš Štrancar & Rok Sekirnik

Analytical and Bioanalytical Chemistry, March 2024

The recent clinical success of messenger RNA (mRNA) technology in managing the Covid pandemic has triggered an unprecedented innovation in production and analytical technologies for this therapeutic modality. mRNA is produced by enzymatic transcription of plasmid DNA (pDNA) using polymerase in a cell-free process of in vitro transcription. After transcription, the pDNA is considered a process-related impurity and is removed from the mRNA product enzymatically, chromatographically, or by precipitation. Regulatory requirements are currently set at 10 ng of template pDNA per single human dose, which typically ranges between 30 and 100 µg. Here, we report the development of a generic procedure based on enzymatic digestion and chromatographic separation for the determination of residual pDNA in mRNA samples, with a limit of quantification of 2.3 ng and a limit of detection of less than 0.1 ng. The procedure is based on enzymatic degradation of mRNA and anion exchange HPLC separation, followed by quantification of residual pDNA with a chromatographic method that is already widely adopted for pDNA quality analytics. The procedure has been successfully applied for in-process monitoring of three model mRNAs and a self-amplifying RNA (saRNA) and can be considered a generic substitution for qPCR in mRNA in-process control analytical strategy, with added benefits that it is more cost-efficient, faster, and sequence agnostic.

Read full article

Full view

Klemen Božič, Ajda Sedlar, Špela Kralj, Urh Černigoj, Aleš Štrancar, Rok Sekirnik

Biotechnology and Bioengineering, 2024, 1–11

High purity of plasmid DNA (pDNA), particularly in supercoiled isoform (SC), is used for various biopharmaceutical applications, such as a transfecting agent for production of gene therapy viral vectors, for pDNA vaccines, or as a precursor for linearized form that serves as a template for mRNA synthesis. In clinical manufacturing, pDNA is commonly extracted from Escherichia coli cells with alkaline lysis followed by anion exchange chromatography or tangential flow filtration as a capture step for pDNA. Both methods remove a high degree of host cell contaminants but are unable to generically discriminate between SC and open-circular (OC) pDNA isoforms, as well as other DNA impurities, such as genomic DNA (gDNA). Hydrophobic interaction chromatography (HIC) is commonly used as polishing purification for pDNA. We developed HIC-based polishing purification methodology that is highly selective for enrichment of SC pDNA. It is generic with respect to plasmid size, scalable, and GMP compatible. The technique uses ammonium sulfate, a kosmotropic salt, at a concentration selective for SC pDNA binding to a butyl monolith column, while OC pDNA and gDNA are removed in flow-through. The approach is validated on multiple adeno-associated virus- and mRNA-encoding plasmids ranging from 3 to 12 kbp. We show good scalability to at least 300 mg of >95% SC pDNA, thus paving the way to increase the quality of genomic medicines that utilize pDNA as a key raw material.

Read full article

Full view

2023

Rok Sekirnik, Head Process Development mRNA | pDNA, Sartorius BIA Separations, d.o.o.

mRNA Production and Synthesis, InformaConnect eBook, November 2023

The use of mRNA vaccines in the fight against SARS-CoV-2 during the COVID-19 pandemic, has demonstrated their enormous potential as a highly effective therapeutic modality and has led to a revolution in biomedicine. Since then, mRNA has also shown promise in the treatment of cancer, rare diseases, anaphylaxis, CRISPR-Cas9-based therapy and others. There are currently >100 clinical trials registered with mRNA being the drug substance. The technology to produce mRNA therapeutics can still be considered as being in the early stages of development, as multiple academic and industrial laboratories across the world invest significant funding and talent, with the intention to increase productivity and purity in the production of mRNA drug substance and lipid nanoparticles that would deliver affordable mRNA therapeutics. This article aims to present a technological paradigm of harnessing the potential of chromatography as a purification tool with high selectivity and scalability that are unmatched by other purification methods, as well as analytical technology that can provide timely and accurate information on the quality and quantity of the mRNA product, its precursors and side-products.

Read full article

Full view

Ana Ferjančič Budihna, Anže Martinčič Celjar, Sergeja Lebar, Andreja Gramc Livk and Aleš Štrancar

Cell & Gene Therapy Insights 2023; 9(9), 1231–1247 | DOI: 10.18609/cgti.2023.161

Rapid advancement of mRNA technology, as a response to the COVID-19 crisis, prompted an increased need for precise analytical methods to support the fast-paced mRNA process development. Accurate and robust analytics are required to support modifications in the mRNA production process, protocols, raw materials, in vitro transcription reaction, purification methods, scale-up, or final formulation processes, to ensure high quality and safety of the final product. This Innovator Insight demonstrates the application of an ion pair reverse phase chromatographic analytical method as a robust analytical tool to determine mRNA fragmentation while also separating in vitro transcription components from the main product. The method’s efficacy is assessed through a comprehensive stability study of a mRNA standard at different temperatures. The chromatographic analytical results are compared to the ones obtained by the capillary gel electrophoresis, a well-established method for the analysis of fragmented mRNA.

Download full article

Full view

Polona Megušar, Rok Miklavčič, Matevž Korenč, Jure Ličen, Tina Vodopivec, Urh Černigoj, Aleš Štrancar, and Rok Sekirnik

Electrophoresis. 2023; 1–11 

Messenger RNA (mRNA) has emerged as a modality with immense therapeutic potential. Recent innovations in production process of mRNA call for procedures to isolate pure mRNA drug substance (DS) with high yield, high capacity, scalability, and compatibility with GMP production systems. Novel RNA modalities, such as circular RNA (circRNA), have further driven the need for non-affinity capture possibilities which are already widely used in the biopharmaceutical industry, for example, in monoclonal antibody processing. The principle that multimodal ion exchange/hydrogen bonding chromatography can be used to separate mRNA from in vitro transcription components has recently been demonstrated. Here, we apply and refine this approach to be suitable for scalable purification of multiple mRNA constructs with sufficient yields, purity, and stability, for use in mRNA production process. Binding capacity of the PrimaS-modified monolithic chromatographic column for mRNA enabled up to 7 mg/mL product isolation in a single chromatographic run, with 98% recovery and room temperature stability of the eGFP mRNA demonstrated for up to 28 days. This approach is independent of construct size or the presence of polyadenylic acid tail and is applicable for capture of a wide variety of RNAs, including mRNA, self-amplifying RNA, circRNA, and with optimization also smaller RNAs such as transfer RNA and others.

Read full article

Full view

Juan Martínez, Verónica Lampaya, Ana Larraga, Héctor Magallón, and Diego Casabona

Frontiers in Molecular Biosciences, volume 10, 2023.

After the COVID-19 pandemic, messenger RNA (mRNA) has revolutionized traditional vaccine manufacturing. With the increasing number of RNA-based therapeutics, valuable new scientific insights into these molecules have emerged. One fascinating area of study is the formation of double-stranded RNA (dsRNA) during in vitro transcription (IVT) which is considered a significant impurity, as it has been identified as a major trigger in the cellular immune response pathway. Therefore, there is a growing importance placed to develop and optimize purification processes for the removal of this by-product. Traditionally, efforts have primarily focused on mRNA purification after IVT through chromatographic separations, with anion exchange and reverse phase chromatography emerging as effective tools for this purpose. However, to the best of our knowledge, the influence and significance of the quality of the linearized plasmid have not been thoroughly investigated. Plasmids production involves the growth of bacterial cultures, bacterial harvesting and lysis, and multiple filtration steps for plasmid DNA purification. The inherent complexity of these molecules, along with the multitude of purification steps involved in their processing, including the subsequent linearization and the less-developed purification techniques for linearized plasmids, often result in inconsistent batches with limited control over by-products such as dsRNA. This study aims to demonstrate how the purification process employed for linearized plasmids can impact the formation of dsRNA. Several techniques for the purification of linearized plasmids based on both, resin filtration and chromatographic separations, have been studied. As a result of that, we have optimized a chromatographic method for purifying linearized plasmids using monolithic columns with C4 chemistry (butyl chains located in the surface of the particles), which has proven successful for mRNAs of various sizes. This chromatographic separation facilitates the generation of homogeneous linearized plasmids, leading to mRNA batches with lower levels of dsRNA during subsequent IVT processes. This finding reveals that dsRNA formation is influenced not only by RNA polymerase and IVT conditions but also by the quality of the linearized template. The results suggest that plasmid impurities may contribute to the production of dsRNA by providing additional templates that can be transcribed into sequences that anneal with the mRNA molecules. This highlights the importance of considering the quality of plasmid purification in relation to dsRNA generation during transcription. Further investigation is needed to fully understand the mechanisms and implications of plasmid-derived dsRNA. This discovery could shift the focus in mRNA vaccine production, placing more emphasis on the purification of linearized plasmids and potentially saving, in some instances, a purification step for mRNA following IVT.

Read full article. 

Full view

Miklavčič, Rok, Polona Megušar, Špela Meta Kodermac, Blaž Bakalar, Darko Dolenc, Rok Sekirnik, Aleš Štrancar, and Urh Černigoj

International Journal of Molecular Sciences 24, no. 18: 14267

Messenger RNA (mRNA) is becoming an increasingly important therapeutic modality due to its potential for fast development and platform production. New emerging RNA modalities, such as circular RNA, drive the need for the development of non-affinity purification approaches. Recently, the highly efficient chromatographic purification of mRNA was demonstrated with multimodal monolithic chromatography media (CIM® PrimaS), where efficient mRNA elution was achieved with an ascending pH gradient approach at pH 10.5. Here, we report that a newly developed chromatographic material enables the elution of mRNA at neutral pH and room temperature. This material demonstrates weak anion-exchanging properties and an isoelectric point of 5.3. It enables the baseline separation of mRNA (at least up to 10,000 nucleotides (nt) in size) from parental plasmid DNA (regardless of isoform composition) with both a NaCl gradient and ascending pH gradient approach, while mRNA elution is achieved in a pH range of 5–7. In addition, the basic structure of the novel material is a chromatographic monolith, enabling convection-assisted mass transfer of large RNA molecules to and from the active surface. This facilitates the elution of mRNA in 3–7 column volumes with more than 80% elution recovery and uncompromised integrity. This is demonstrated by the purification of a model mRNA (size 995 nt) from an in vitro transcription reaction mixture. The purified mRNA is stable for at least 34 days, stored in purified H2O at room temperature.

Read full article

Full view

Rok Sekirnik

Research Outreach, 2023

The COVID-19 pandemic placed mRNA at the centre of biopharmaceutical research, as mRNA is now being developed for cancer therapy, protein replacement therapy, and infectious diseases. That is why, worldwide, the need to produce mRNA on a large scale has increased dramatically. The currently used method is quite costly, limiting the scale-up of mRNA production. Dr Rok Sekirnik and colleagues at Sartorius BIA Separations, Slovenia, found a way to monitor and analyse the production of mRNA in the laboratory while decreasing the cost by up to 50%.

Read full article

Full view

Špela Kralj, Špela Meta Kodermac, Ines Bergoč, Tomas Kostelec, Aleš Podgornik, Aleš Štrancar, Urh Černigoj

Electrophoresis. 2023; 1– 13

Increased need for plasmid DNA (pDNA) with sizes above 10 kbp (large pDNA) in gene therapy and vaccination brings the need for its large-scale production with high purity. Chromatographic purification of large pDNA is often challenging due to low process yields and column clogging, especially using anion-exchanging columns. The goal of our investigation was to evaluate the mass balance and pDNA isoform composition at column outlet for plasmids of different sizes in combination with weak anion exchange (AEX) monolith columns of varying channel size (2, 3 and 6 µm channel size). We have proven that open circular pDNA (OC pDNA) isoform is an important driver of reduced chromatographic performance in AEX chromatography. The main reason for the behaviour is the entrapment of OC pDNA in chromatographic supports with smaller channel sizes. Entrapment of individual isoforms was characterised for porous beads and convective monolithic columns. Convective entrapment of OC pDNA isoform was confirmed on both types of stationary phases. Porous beads in addition showed a reduced recovery of supercoiled pDNA (on an 11.6 kbp plasmid) caused by diffusional entrapment within the porous structure. Use of convective AEX monoliths or membranes with channel diameter >3.5 µm has been shown to increase yields and prevent irreversible pressure build-up and column clogging during purification of plasmids at least up to 16 kbp in size.

Download full article

Full view

Nejc Pavlin, Urh Černigoj, Mojca Bavčar, Tjaša Plesničar, Jan Mavri, Martin Zidar, Matevž Bone, Urška Kralj Savič, Tadej Sever, and Aleš Štrancar

Electrophoresis. 2023; 1– 11

High-performance liquid chromatography (HPLC)-based analytical assays are used to effectively monitor purity and quantity of plasmid DNA (pDNA) throughout the purification process. However, the phenomenon of physical entrapment of open circular (OC) isoforms pDNA inside narrow channels of chromatographic support decreases its accuracy and precision and the effect increases with pDNA size. The purpose of the study was to develop a chromatographic method for accurate analytical separation between isoforms of <16 kbp pDNA using weak anion exchanging monolithic column with large (6 µm) convective channels. Purified samples of 4.7 and 15.4 kbp large pDNA with known isoform composition were prepared and their isoforms separated in ascending salt gradient. Both OC and supercoiled (SC) isoforms were baseline separated at a flow rate below 0.5 mL min−1 in a guanidinium chloride (GdnCl) gradient with a ≥95% OC pDNA elution recovery. However, these chromatographic conditions increased 2 times the peak width for linear (LIN) pDNA isoform compared to the results using monoliths with 1.4 µm channel size. If other chaotropic agents, such as urea or thiocyanate (SCN), were added to Gdn ions, the elution volume for LIN isoform decreased. Optimization of combined GdnCl/GdnSCN gradient for pDNA elution resulted in a simple and robust chromatographic method, where OC–LIN and LIN–SC pDNA (up to 15 kbp size) were separated with resolution above 1.0 and above 2.0, respectively. The accessibility and general acceptance of anion exchange chromatography for pDNA analytics give the newly developed method a great potential for in-process control monitoring of pDNA production processes.

Download full article

Full view

Lucija Rebula, Andrej Raspor, Mojca Bavčar, Aleš Štrancar and Maja Leskovec

Journal of Chromatography B, Volume 1217, 15 February 2023

Bacteriophages represent immense potential as therapeutic agents. Many of the most compelling applications of bacteriophages involve human therapy, some pertinent to gene therapy, others involving antibiotic replacement. Phages themselves are considered safe for humans. However, phage lysates may contain many kinds of harmful by-products, especially endotoxins of gram-negative bacteria and protein toxins produced by many pathogenic bacterial species. In bacteriophage research and therapy, most applications ask for highly purified phage suspensions, as such it is crucial to reduce proteins, endotoxins, DNA and other contaminants.
In this article we present an efficient two-step chromatographic purification method for P. aeruginosa bacteriophage PP-01, using Convective Interaction Media (CIM®) monoliths, that is cGMP compliant and easy to scale-up for most stringent production of the therapeutic phage. First chromatographic step on CIMmultus OH resulted in 100% bacteriophage recovery with a reduction of 98 % protein and more than 99 % DNA content. Polishing was conducted using three different column options, CIMmultus with QA, H-Bond and PrimaS ligands. For PP-01 bacteriophage all three different options worked, but multimodal ligands H-Bond and PrimaS outperformed traditional QA in endotoxin removal (7 log step reduction). Additionally, an HPLC analytical method was developed to estimate phage concentration and impurity profile in different in-process samples. The HPLC method shows good correlation with drop assay titration, provides useful insights and can be run very fast with just 20 min per sample analysis.

Download full article

Full view

2022
  • What is the impact of each reagent on in vitro transcription yield and kinetics?
  • How can at-line analytics be implemented to monitor capping reaction?
  • Does feeding NTPs to the IVT reaction affect capping efficiency?
  • How to accurately quantify mRNA in a crude IVT reaction?
Individual IVT reaction components were optimised by understanding IVT reaction kinetics. The paper shows that development of fed-batch IVT requires more than just NTP addition, with Mg2+ being a critical component. Batch and fed-batch IVT were evaluated in terms of capping efficiency.

Domen Pregeljc, Janja Skok, Tina Vodopivec, Nina Mencin, Andreja Krušič, Jure Ličen, Kristina Šprinzar Nemec, Aleš Štrancar & Rok Sekirnik

Biotechnology and Bioengineering, December 2022

The COVID‐19 pandemic triggered an unprecedented rate of development of messenger ribonucleic acid (mRNA) vaccines, which are produced by in vitro transcription reactions. The latter has been the focus of intense development to increase productivity and decrease cost. Optimization of in vitro transcription (IVT) depends on understanding the impact of individual reagents on the kinetics of mRNA production and the consumption of building blocks, which is hampered by slow, low‐ throughput, end‐point analytics. We implemented a workflow based on rapid at‐line high pressure liquid chromatography (HPLC) monitoring of consumption of nucleoside triphosphates (NTPs) with concomitant production of mRNA, with a sub‐3 min read‐ out, allowing for adjustment of IVT reaction parameters with minimal time lag. IVT was converted to fed‐batch resulting in doubling the reaction yield compared to batch IVT protocol, reaching 10 mg/ml for multiple constructs. When coupled with exonuclease digestion, HPLC analytics for quantification of mRNA was extended to monitoring capping efficiency of produced mRNA. When HPLC monitoring was applied to production of an anti‐reverse cap analog (ARCA)‐capped mRNA construct, which requires an approximate 4:1 ARCA:guanidine triphosphate ratio, the optimized fed‐ batch approach achieved productivity of 9 mg/ml with 79% capping.

The study provides a methodological platform for optimization of factors influencing IVT reactions, converting the reaction from batch to fed‐batch mode, determining reaction kinetics, which are critical for optimization of continuous addition of reagents, thus in principle enabling continuous manufacturing of mRNA.

Download full article.

Full view

  • How does Oligo dT18 compare to Oligo dT24?
  • Does flow rate affect binding capacity for mRNA?
  • Does variability in ligand density affect binding capacity?
  • How scalable is purification by Oligo dT18?
A comprehensive overview of development and optimisation of Oligo dT monoliths describes multiple factors affecting its chromatographic performance. Flow rate, ligand density, size of mRNA are discussed in the paper.

Nina Mencin, Dona Štepec, Alja Margon, Jana Vidič, Darko Dolenc, Tina Simčič, Sara Rotar, Rok Sekirnik, Aleš Štrancar, Urh Černigoj

Separation and Purification Technology, Volume 304, 1 January 2023

Abstract:

Oligo-deoxythymidilic acid (OdT) probes conjugated to solid-phase supports exhibit high affinity for poly-adenylated mRNA (target) through high-affinity base-pairing interactions. Here we report the development of a OdT-functionalized chromatographic monolith for purification of polyadenylated mRNA and development of purification methods to support large-scale purification of mRNA-based therapeutics. We report the development of a chromatographic assay based on a synthetic oligo-deoxyadenylic acid chain of 10 or 20 nucleotides (OdA10 and OdA20) as a surrogate for polyadenylated mRNA, which was used for optimization of the OdT affinity column (i.e. the amount and structure of OdT immobilized and monolithic channel size). OdA hybridization to OdT monoliths correlated well with the amount of immobilized OdT, while an in-depth analysis revealed that hybridization yield decreased with increasing size of the target, temperature and probe surface coverage. OdA hybridization kinetics was flow rate-independent, confirming convection-based mass transport within the monolith’s channels. The demonstrated steep adsorption isotherms enable chromatographic capture of even highly diluted OdA-containing molecules. Dynamic binding capacity for model mRNA was independent of OdT length and amount of immobilized OdT probes above a critical threshold but was highly influenced by the composition of the binding buffer and mRNA residence time. We demonstrated the scalability of the mRNA purification process with OdT monoliths from 0.1 mL to at least 800 mL bed volume, paving the way for manufacturing processes on OdT monoliths with 40 L bed volume.

Download full article

Full view

  • Can IVT yields be increased beyond 5-8 g/L?
  • Does feeding nucleotides into the IVT reaction increase its yield?
  • Is there a fast analytical method to quantify NTPs in IVT in real-time?
  • Can production of mRNA be automated?
Transitioning from batch to fed-batch IVT can increase IVT yield to 12 g/L resulting in 50 % reduction in cost per gram of mRNA. Integrating HPLC monitoring of IVT reaction can allow real-time decisions on feed additions.

Janja Skok, Polona Megušar, Tina Vodopivec, Domen Pregeljc, Nina Mencin, Matevž Korenč, Andreja Krušič, Anže Martinčič Celjar, Nejc Pavlin, Jana Krušič, Matthias Mueller, Kevin McHugh, Aleš Štrancar, and Rok Sekirnik

Chemie Ingenieur Techik, October 2022

The COVID-19 pandemic triggered an unprecedented surge in development of mRNA-based vaccines. Despite the need to increase process productivity and thus decrease the cost of mRNA vaccines, limited scientific literature is available on strategies to increase the yield of in vitro transcription (IVT) reaction, the unit operation with highest cost of goods, which has traditionally been performed as a batch reaction. Single-use bioreactors are traditionally used for cell-based production of biopharmaceuticals, but some core functionalities, such as controlled and automated feed addition, are potentially useful for cell-free mRNA processes. We report the production of 2 g mRNA in an Ambr® 250 Modular bioreactor system with a starting volume of 100 mL, reaching a maximum mRNA concentration of 12 g L−1 by a fed-batch IVT approach, and demonstrate the feasibility of continuous fed-batch production, paving the way towards continuous manufacturing of mRNA.

Download full article

Full view

Ana Ferjančič Budihna, Nejc Pavlin, Anže Martinčič Celjar, Andreja Gramc Livk and Aleš Štrancar

BioProcess International eBook, September 14, 2022

Robust and precise chromatographic analytical methods are key for the efficient development of the mRNA production process.

Three different analytical methods, which utilize three different column chemistries, are embedded in a ready-to-use PATfix™ analytical platform to support mRNA process development and product quantification and characterization.

Download full article

Full view

Tingting Cui, Kareem Fakhfakh, Hannah Turney, Gülin Güler-Gane, Aleksandra Toloczko, Martyn Hulley, Richard Turner

American Institute of Chemical Engineers, September 2022

In recent years, mRNA-based therapeutics have been a fast-growing new class of biologics that can, in principle, encode any protein(s) directly in patients to treat various diseases. mRNA vaccines have been proven to work efficiently, have high potency, and can be rapidly developed and deployed, which is critical for a quick responses in the case of a pandemic. Such agile development is enabled by rapid synthesis of RNA in vitro using recombinant enzymes rather than relying on lengthy and complex cell culture processes. mRNA exhibits physical and chemical properties differing from protein-based therapeutics. It is highly negatively charged and the hydroxyl group makes mRNA less stable and more susceptible to hydrolysis and nucleophilic cleavage. This novel work shares comprehensive studies carried out to compare the performance of various mRNA purification strategies by considering its scalability and critical quality attributes. In addition, the paper provides insights on how to establish a scalable mRNA purification process that consists of ultrafiltration/diafiltration and chromatography steps with good recoveries. Alternative Oligo(dT) based columns were further explored aiming to improve total process recovery. With Oligo(dT) as a capture step, overall recoveries of 70% can be achieved for mRNAs studied here that encode anti-influenza immunoglobulin G monoclonal antibodies.

Download full article

Full view

Nina Mencin, Andreja Krušic, Jure Ličen, Sebastijan Peljhan, Jana Vidič, Urh Černigoj, Tomas Kostelec, Aleš Štrancar and Rok Sekirnik

BioProcess International's Special Report, June 2022

Abstract:

Messenger RNA (mRNA) emerged as a powerful therapeutic tool for treatments in gene therapy, oncology, and infectious diseases, as recently demonstrated by vaccines against Covid-19. mRNA is produced by an enzymatic reaction that can be rapidly designed and scaled-up, and the platform is highly adaptable to different targets. One of the greatest challenges in mRNA production is the removal of process-related impurities stemming from in vitro transcription (IVT) reaction, such as residual nucleotide triphosphates, DNA template, enzymes, abortive transcripts.

Affinity-based chromatographic isolation of mRNA is robust and simple, lending itself as a useful industrial platform. mRNA constructs typically contain a 3’ polyA tail to increase stability in vivo, thereby enabling affinity purification using oligo-deoxythymidinic acid (Oligo dT) probes covalently coupled to a solid support. Macro-porous polymethacrylate monoliths offer high binding capacity and resolution for mRNA due to the convective nature of interconnected flow-through channels (>1.5 μm) modified with ligands that are easily accessible for mRNA. Typical binding capacity for CIMmultus™ Oligo dT for mRNA is 2-4 mg/mL, depending on construct length and loading concentration of NaCl.

Due to an increasing productivity of IVT reaction protocols, which routinely reach 5-10 mg/mL, elucidation of conditions that increase binding capacity of Oligo dT has been an intense focus of development. CIM® Oligo dT 0.05 mL Monolithic 96-well Plates were used for multi-parallel screening of binding conditions. Binding capacity could be significantly increased if NaCl is replaced with Gu-HCl, with DBC values of >6 mg/mL demonstrated, and scalability of binding capacity shown on CIMmultusTM Oligo dT preparative scale, which spans bed volume range 1 mL – 40 L, thereby theoretically supporting the purification of >200 g mRNA in a single run.

Read full article

Full view

2021
  • At which scale should chromatographic purification be introduced?
  • Are there analytical chromatography solutions to improve my process?
  • How to control dsRNA contamination in drug substance?
This paper is an overview of the use of chromatography in the complete production of mRNA, from plasmid to pure mRNA, including analytical HPLC.

Rok Sekirnik and Tomas Kostelec

BioProcess International's special report, December 2021

Abstract:

Rapid response to global pandemics requires the manufacture of billions of vaccine doses within months. This short timeline must allow for design and testing of active ingredients, development of production and purification processes, clinical evaluations, regulatory filings, and manufacturing. Existing purification methods often have been adopted from laboratory-scale techniques to allow rapid implementation, and those have provided adequate product quality. But future mRNA development will require optimized production and purification processes.

Chromatography has been a workhorse of biomanufacturing for decades, including for monoclonal antibodies, plasmid DNA, viruses, and other modalities — as well as for supporting analytics. As an emerging therapeutic modality, mRNA production requires the development of new methodologies to suit its peculiar physicochemical profile: large, charged, and relatively unstable. Due to requirements for high purity, these methodologies will be based in large part on chromatography.

This article describes the versatility of chromatography when applied to mRNA production, starting with the purification of the key raw material (plasmid DNA) to final polishing of mRNA drug substance.

Attachments

Full view

  • How does chromatography affect RNA stability?
  • Can HPLC be used for RNA stability assessment?
  • Is precipitation a good approach for small-scale RNA purification?
  • How do HPLC, bioanalyser, AGE, and other methods compare?
Thermal and freeze-thaw stability of a model RNA construct purified by various methods is evaluated by a range of analytical methods. Results indicate a stark contrast in stability, and discuss applicability of analytical methods for stability assessment.

Matevž Korenč, Nina Mencin, Jasmina Puc, Janja Skok, Kristina Šprinzar Nemec, Anže Martinčič Celjar, Pete Gagnon, Aleš Štrancar, Rok Sekirnik

Cell & Gene Therapy Insights 2021; 7(9), 1207–1216

Abstract:

One of the major challenges of mRNA based vaccines has been their requirement for distribution and storage at extremely low temperatures, indicating that exposure of mRNA to suboptimal physico-chemical conditions can result in degradation and loss of potency; it is unclear whether this is due to instability of mRNA drug substance, or LNP-encapsulated mRNA, or both. In this study we compare the stability of model mRNA drug substance (eGFP, 995 nt) prepared by affinity chromatography with the stability of mRNA purified by precipitation. We show that both purification methods lead to highly pure mRNA drug substance, however, mRNA purified by chromatography remains stable for 28 days at 37°C, whereas mRNA purified by precipitation is subject to significant degradation under the same storage conditions. We conclude that chromatography eliminates elements and/or conditions with adverse impact on the quality of mRNA to a greater extent than precipitation method and that choosing appropriate purification strategy is crucial not only to achieve target purity but also to obtain a stable product with retained integrity.

Read full article.

Full view

by Nejc Pavlin, Blaž Bakalar, Janja Skok, Špela Kralj, Andreja Gramc Livk, and Aleš Štrancar

BioProcess International, October 2021

Abstract:

Plasmid DNA (pDNA) has become a crucial component in the production of next generation therapeutics such as messenger RNA (mRNA) and viral vectors.

As companies ramp up their production capabilities and move towards clinical applications, obtaining cGMP grade pDNA has become a production bottleneck, leading to lengthy production delays.

There is a growing market demand for solutions that can streamline the production of cGMP pDNA and help optimize down-stream processes (DSP) for better yields & purity.

The key step in this process is having quantifiably reliable analytics that give rapid results
for process optimization and scale-up, as well as production runs.

Establishing and expanding inhouse pDNA production platform in a quick and efficient manner will be a key differentiator between more and less successful next generation therapeutics projects.

Download full eBook

Full view