On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2014

F. W. Krainer, R. Pletzenauer, L. Rossetti, C. Herwig, A. Glieder, O. Spadiut
Protein Expression and Purification 95 (2014) 104–112

The plant enzyme horseradish peroxidase (HRP) is used in several important industrial and medical applications, of which especially biosensors and diagnostic kits describe an emerging field. Although there is an increasing demand for high amounts of pure enzyme preparations, HRP is still isolated from the plant as a mixture of different isoenzymes with different biochemical properties. Based on a recent next generation sequencing approach of the horseradish transcriptome, we produced 19 individual HRP isoenzymes recombinantly in the yeast Pichia pastoris. After optimizing a previously reported 2-step purification strategy for the recombinant isoenzyme HRP C1A by substituting an unfavorable size exclusion chromatography step with an anion exchange step using a monolithic column, we purified the 19 HRP isoenzymes with varying success. Subsequent basic biochemical characterization revealed differences in catalytic activity, substrate specificity and thermal stability of the purified HRP preparations. The preparations of the isoenzymes HRP A2A and HRP A2B were found to be highly interesting candidates for future applications in diagnostic kits with increased sensitivity.

Read full article

Full view

2013

M. Bartolini, I. W. Wainer, C. Bertucci, V. Andrisano

Journal of Pharmaceutical and Biomedical Analysis 73 (2013) 77-81

Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2 mm × 6 mm i.d.), under a three-solvent gradient elution mode and UV detection at 256 nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples.

Purchase full article

Full view

F. Ibrahim, C. Andre, R. Aljhni, T. Gharbi, Y. C. Guillaume

Journal of Molecular Catalysis B: Enzymatic 94 (2013) 136-140

Acetylcholinesterase (AChE) is a serine protease that hydrolyzes the neurotransmitter acetylcholine. Here, the effects of hydroxyl radical (OH•) and nitric oxide (NO) on AChE activity were studied using a biochromatographic process. The enzyme was immobilized on an ethylenediamine (EDA) monolithic convective interaction media (CIM) disk. The AChE enzymatic mechanism was demonstrated from the chromatographic peak shape. A decrease in AChE activity was observed for each concentration of NO, while OH• dot radical formation led to an increase in the rate of enzymatic catalysis. Michaelis–Menten and Lineweaver–Burk plots were obtained in the presence or absence of the free radicals and their effects on Km and Vmax were evaluated. Our results indicated classical deactivation/activation kinetics without significant influence on the rate of substrate binding. The variation in transition state energies (ΔΔGES) induced by the free radicals indicated that a conformational change was occurring in the active site, while changes in the binding site were negligible. These results clearly demonstrate the direct role of OH• dot and NO on AChE activity and confirm the role they may play in Alzheimer's disease.

Purchase full article

Full view

H. G. Schwelberger, J. Feurle, F. Ahrens

Journal of Neural Transmission 120 (2013) 983-986

Diamine oxidase (DAO) was purified to homogeneity from human seminal plasma by consecutive chromatographic fractionation on heparin-sepharose, phenyl-sepharose, CIM-QA, and Superdex 200. Human seminal plasma DAO behaves electrophoretically similar to DAO proteins from other human tissues and has very similar enzymatic properties with histamine and aliphatic diamines being the preferred substrates as well as significant conversion of polyamines. The cellular source and functional importance of DAO in human semen remain to be determined.

Purchase full article

Full view

2012

J. Subotič, K. Koruza, B. Gabor, M. Peterka, M. Barut, J. Kos, J. Brzin

Affinity Chromatography, Dr. Sameh Magdeldin (Ed.), ISBN: 978-953-51-0325-7, InTech

Proteolytic enzymes (also known as proteases, proteinases or peptidases) offer a wide range of applications. They are routinely used in detergent, leather, food and pharmaceutical industries, as well as in medical and basic research. Therefore, effective isolation procedures are of great importance. The chapter describes the use of recently discovered protease inhibitors from basidiomycetes as affinity chromatography ligands for isolating proteases. Affinity columns with serine and cysteine protease inhibitors immobilized to the natural polymer Sepharose have been prepared, the chromatography procedure optimized and used for isolating proteases from various bacterial, plant and animal sources. The cysteine protease inhibitor macrocypin showed superior characteristics as a ligand, so was selected for immobilization to CIM (Convective Interaction Media) monolithic disks. Different immobilization chemistries and process conditions were optimized to determine the best conditions for high capacity and selectivity. A very effective method for isolating cysteine proteases was developed using affinity chromatography with the fungal cysteine protease inhibitor macrocypin immobilized to a CIM monolithic disk.

Read full article

Full view

E. S. Sinitsyna, J. G. Walter, E. G. Vlakh, F. Stahl, C. Kasper, T. B. Tennikova
Talanta 93 (2012) 139-146

Macroporous monoliths with different surface functionalization (reactive groups) were utilized as platforms for DNA analysis in microarray format. The slides based on a copolymer glycidyl methacrylate-co- ethylene dimethacrylate (GMA-EDMA) have been chosen as well known and thoroughly studied standard. In particular, this material has been used at optimization of DNA microanalytical procedure.

The concentration and pH of spotting solution, immobilization temperature and time, blocking agent and coupling reaction duration were selected as varied parameters. The efficiency of analysis performed on 3-D monolithic platforms was compared to that established for commercially available glass slides. As a practical example, a diagnostic test for detection of CFTR gene mutation was carried out. Additionally, the part of presented work was devoted to preparation of aptamer-based test-system that allowed successful and highly sensitive detection both of DNA and protein.

Purchase full article

Full view

2010

E.A. Ponomareva, V.E. Kartuzova, E.G. Vlakh, T.B. Tennikova

Journal of Chromatography B, 878 (2010) 567–574

The effect of different modes of α-chymotrypsin attachment to the surface of methacrylate-based ultrashort monolithic minicolumns on enzyme activity has been studied. The immobilization of protease was carried out via direct covalent binding of chymotrypsin, as well as via its attachment through small and polymer spacers. It was established that the lowest enzyme activity against N-benzoyl-l-tyrosine ethyl ester was found for bioreactor obtained via direct attachment of chymotrypsin to the surface of GMA–EDMA minidisks, whereas the highest parameter close to that determined for dissolved enzyme was found in the case of bioreactor prepared by the introduction of copolymer of 2-deoxy-N-methacryloylamido-d-glucose with N-vinylpyrrolidone and acrolein as a long and flexible polymer spacer. Additionally, the effect of flow rate of substrate recirculation on bioconversion efficiency was examined. Independently on immobilization method, the increase of flow rate led to the raise of biocatalytic efficiency.

Purchase full article

Full view

2009

C. Delattre, M. A. Vijayalakshmi

Journal of Molecular Catalysis B: Enzymatic 60 (2009) 97–105

Recent research in the area of bioactive carbohydrates has shown the efficiency of oligosaccharides as signal molecules in a lot of biological activities. Newly observed functions of oligosaccharides and their abilities to act as specific regulatory molecules on various organisms have been more and more described. A successful development of these bioactive molecules in future needs efficient processes for specific oligosaccharides production. To exploit them for putative industrial scale up processes, two main strategies are currently investigated: the synthesis (chemical or bioconversion processes) and the polysaccharide cleavage (chemical, physical or biological processes). Nevertheless, if new manufacturing biotechnologies have considerably increased the development of these functional molecules, the main drawback limiting their biological applications is the complexity to engender specific glycosidic structures for specific activities. In the recent years, new enzymatic reactors have been developed, allowing the automatic synthesis of oligosaccharide structures. This review focuses on the knowledge in the area of bioactive oligosaccharides and gives the main processes employed to generate them for industrial applications with challenges of monolith microreactors.

Purchase full article

Full view

2008

C. Delattre, P. Michaud, M. A. Vijayalakshmi

Journal of Chromatography B, 861 (2008) 203–208

Fast production and purification of α-(1,4)-oligogalacturonides was investigated using a new enzymatic reactor composed of a monolithic matrix. Pectin lyase from Aspergillus japonicus (Sigma) was immobilized on CIM-disk epoxy monolith. Studies were performed on free pectin lyase and immobilized pectin lyase to compare the optimum temperature, optimum pH, and thermal stability. It was determined that optimum temperature for free pectin lyase and immobilized pectin lyase on monolithic support is 30 °C, and optimum pH is 5. Monolithic CIM-disk chromatography is one of the fastest liquid chromatographic method used for separation and purification of biomolecules due to high mass transfer rate. In this context, online one step production and purification of oligogalacturonides was investigated associating CIM-disk pectin lyase and CIM-disk DEAE. This efficient enzymatic bioreactor production of uronic oligosaccharides from polygalacturonic acid (PGA) constitutes an original fast process to generate bioactive oligouronides.

Purchase full article

Full view

2007

K. Isobe, Y. Kawakami

Journal of Chromatography A, 1144 (2007) 85-89(2007) 85-89

A convection interaction media (trade name CIM, Sartorius BIA Separation, Ljubljana, Slovenia) isobutyl monolithic disc was prepared by incubating a CIM epoxy monolithic disc with isobutylamine, and it was then applied to the purification of secondary alcohol dehydrogenase (S-ADH) and primary alcohol oxidase (P-AOD). Both enzymes were adsorbed on this column and eluted with high purity. Thus, S-ADH was purified to an electrophoretically homogeneous state by four column chromatographies using CIM DEAE-8 and CIM C4-8 tube monolithic columns, blue-Sepharose column and CIM isobutyl disc monolithic column. P-AOD was also purified to an electrophoretically homogeneous state by three column chromatographies of CIM DEAE-8 tube, CIM C4-8 tube and CIM isobutyl disc columns.

Purchase full article

Full view

I.Vovk, B. Simonovska

Journal of Chromatography B, 849 (2007) 337-343

The most abundant isoforms of tomato pectin methylesterase (PME; EC 3.1.1.11; Mr 26 kDa), polygalacturonase (PG; EC 3.2.1.15; PG1 with Mr 82 kDa) and a basic protein with Mr 42 kDa and unknown function were isolated from fresh tomato fruit by a fast chromatographic procedure on a Convective Interaction Media (CIM®) short monolithic disk column bearing carboxymethyl (CM) groups. The extraction of the targeted enzymes with 1.2 M NaCl solution was followed by precipitation with ammonium sulfate at 60% of saturation, solubilisation of the pellet in 0.5 M NaCl and fractionation using a linear gradient from 0 to 700 mM NaCl. Among six fractions five had PME activity and four had PG activity, while one fraction containing a pure protein with Mr 42 kDa with neither of these activities. Two concentrated fractions, one with PG and one with PME were further purified. A linear gradient from 0 to 500 mM NaCl with 20% CH3CN in the mobile phase was used for the PG fraction and two CM disks and a linear gradient from 0 to 200 mM NaCl were used for the PME fraction as a greater capacity was necessary in this case. From 4 kg of fresh tomato flesh we obtained 22 mg of purified PME, 1.8 mg of purified, active PG1, 13.5 mg of additional basic protein and a fraction with PG2 contaminated by a PME isoform. Carboxymethyl CIM disk short monolithic columns are convenient for semi-preparative and analytical work with tomato fruit pectolytic enzymes.

Purchase full article

Full view

I. Vovk, B. Simonovska

Journal of Chromatography A, 1144 (2007) 90-96(2007) 90-96

An improved cation-exchange chromatographic procedure on Convective Interaction Media (CIM, Sartorius BIA Separations, Ljubljana, Slovenia) short monolithic methacrylate disk columns was used for the isolation of salt-independent pectin methylesterase (PME; EC 3.1.1.11) isoform and endo-polygalacturonase PG1 (PG, EC 3.2.1.15) from ripe tomato fruit extract after studying the chromatographic conditions including type of disk, binding buffer, pH, eluent composition and different gradients. Between 10 and 20 μg of proteins gave reliable chromatograms. Both carboxymethyl (CM) and sulfonyl (SO3) disks were equally suitable for the fractionation of tomato extract using the new gradient, but only CM disk was appropriate for further purification of the PME and PG fractions, and provided fast and sharp separation of proteins. The isolation of pure PG1 could be achieved only by addition of 20% of acetonitrile to the mobile phase. About 200 μg of proteins were loaded at one chromatographic run at the fractionation and purification. Determination of the molecular weights of the separated proteins showed that dimer of salt-independent PME isoform was formed in concentrated solutions of the enzyme but dissociated upon dilution of the solution. From 6 kg of fresh tomato flesh, 28 mg of purified salt-independent PME, 12.5 mg of purified and active PG1 and 4 mg of PG2 fraction contaminated with salt-dependent PME isoform were obtained by means of semi-preparative chromatography on CIM disks.

Purchase full article

Full view

R. Nicoli, N. Gaud, C. Stella, S. Rudaz, J.-L. Veuthey

Journal of Pharmaceutical and Biomedical Analysis 48 (2008) 398–407

The preparation and characterization of three trypsin-based monolithic immobilized enzyme reactors (IMERs) developed to perform rapid on-line protein digestion and peptide mass fingerprinting (PMF) are described. Trypsin (EC 3.4.21.4) was covalently immobilized on epoxy, carboxy imidazole (CDI) and ethylenediamine (EDA) Convective Interaction Media® (CIM) monolithic disks. The amount of immobilized enzyme, determined by spectrophotometric measurements at 280 nm, was comprised between 0.9 and 1.5 mg per disk. Apparent kinetic parameters K*m and V*max, as well as apparent immobilized trypsin BAEE-units, were estimated in flow-through conditions using N-α-benzoyl-l-arginine ethyl ester (BAEE) as a low molecular mass substrate. The on-line digestion of five proteins (cytochrome c, myoglobin, α1-acid glycoprotein, ovalbumin and albumin) was evaluated by inserting the IMERs into a liquid chromatography system coupled to an electrospray ionization ion-trap mass spectrometer (LC-ESI–MS/MS) through a switching valve. Results were compared to the in-solution digestion in terms of obtained scores, number of matched queries and sequence coverages. The most efficient IMER was obtained by immobilizing trypsin on a CIM® EDA disk previously derivatized with glutaraldehyde, as a spacer moiety. The proteins were recognized by the database with satisfactory sequence coverage using a digestion time of only 5 min. The repeatability of the digestion (R.S.D. of 5.4% on consecutive injections of myoglobin 12 μM) and the long-term stability of this IMER were satisfactory since no loss of activity was observed after 250 injections.

Purchase full article

Full view

M. Bartolini, V. Cavrini, V. Andrisano

Journal of Chromatography A, 1144 (2007) 102–110

The aim of the present study was the application of a human AChE-CIM-IMER (enzyme reactor containing acetylcholinesterase immobilized on a monolithic disk) for the rapid evaluation of the thermodynamic and kinetic constants, and the mechanism of action of new selected inhibitors. For this application, human recombinant AChE was covalently immobilized onto an ethylenediamine (EDA) monolithic Convective Interaction Media (CIM) disk and on-line studies were performed by inserting this IMER into a HPLC system. Short analysis time, absence of backpressure, low nonspecific matrix interactions and immediate recovery of enzyme activity were the best characteristics of this AChE-CIM-IMER. Mechanisms of action of selected reversible inhibitors (tacrine, donepezil, edrophonium, ambenonium) were evaluated by means of Lineweaver–Burk plot analysis. Analyses were performed on-line by injecting increasing concentrations of the tested inhibitor and substrate and by monitoring the product peak area. AChE-CIM-IMER kinetic parameters (Kmapp and vmaxapp ) were derived as well as inhibitory constants (Kiapp of selected compounds. Moreover, noteworthy results were obtained in the application of the AChE-CIM-IMER to the characterization of the carbamoylation and decarbamoylation steps in pseudo-irreversible binding of carbamate derivatives (physostigmine and rivastigmine). AChE-CIM-IMER appeared to be a valid tool to determine simultaneously the kinetic constants in a reliable and fast mode. The obtained values were found in agreement with those obtained with the classical methods with the free enzyme. Furthermore, after inactivation by carbamates, activity could be fully recovered and the AChE-CIM-IMER could be reused for further studies. Results showed that the AChE-CIM-IMER is a valid tool not only for automated fast screening in the first phase of the drug discovery process but also for the finest characterization of the mode of action of new hit compounds with increased accuracy and reproducibility and with saving of time and materials.

Purchase full article

Full view

2005

K. Isobe, Y. Kawakami

Journal of Chromatography A, 1065 (2005) 129-134

Chromatography conditions for two types of convection interaction media (CIM) tube monolithic column, DEAE-8 and C4-8, were investigated using three enzymes from different microorganisms. The enzymes were adsorbed on a CIM DEAE-8 tube column under the same conditions as conventional DEAE columns. The CIM C4-8 tube column required a high concentration of ammonium sulfate compared to the conventional C4 column for adsorbing the enzymes. The separation of enzymes on the CIM tube column chromatography was not affected at flow rates between 0.15 and 1.25 volumes of the column per min. Both columns were successfully applied to the purification of enzymes from crude enzyme solution. Thus, both CIM tube monolithic columns proved useful in greatly reducing the purification time, and could be used at any stage of enzyme purification.

Purchase full article

Full view

I. Vovk, B. Simonovska, M. Benčina

Journal of Chromatography A, 1065 (2005) 121-128

One of the main forms of tomato pectin methylesterase (PME; EC 3.1.1.11) that is applicable to the food industry was isolated from fresh tomato fruit. The extraction of the PME isoenzymes involved washing the fresh tomato flesh with water in order to remove sugars and than solubilizing the enzymes with a diluted HCl solution at pH 1.6. The extract was then neutralized to pH 7.4 using buffer solution. After filtration, the solution was directly fractioned using Convective Interaction Media (CIM®) short monolithic disk column bearing sulfonyl (SO3) groups and using a linear gradient from 0 to 700 mM NaCl. The injection volume was 3 ml and the diameter of the column was 12 mm and length 3 mm. The isolated fractions were monitored for protein content and PME activity. The fraction with the targeted enzyme, which showed NaCl independent activity, was further purified and concentrated by ultrafiltration and finally purified by a second semi-preparative cation-exchange chromatography step using a CIM carboxymethyl (CM) disk monolithic column consisting of two disks and applying a step gradient. From 1 kg of fresh tomato fruits, 7.5 mg of purified PME with molecular mass estimated to be 26 000 by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was obtained. A fraction with mixed PME and polygalacturonase activity was also obtained. Compared to the published procedures for the isolation and purification of PME from plant materials, this new procedure is much faster and more efficient. The potential application of CIM disk short monolithic columns in the analysis and semi-preparative extraction and isolation of the PME isoenzyme is presented.

Purchase full article

Full view

G. A. Platonova, T. B. Tennikova

Journal of Chromatography A, 1065 (2005) 75–81(2005) 75–81

High-performance monolithic disk affinity chromatography was applied to the investigation of formation of complexes between (1) complementary polyriboadenylic and polyribouridylic acids, e.g. poly(A) and poly(U), respectively, (2) poly(A) and synthetic polycation poly(allylamine), pAA. Polyriboadenylic acid and poly(allylamine) were immobilized on macroporous disks (CIM disks). Quantitative parameters of affinity interactions between macromolecules were established using frontal analysis at different flow rates.

Purchase full article

Full view

Y.-P. Lim, D. Josić, H. Callanan, J. Brown, D. C. Hixson

Journal of Chromatography A, 1065 (2005) 39–43(2005) 39–43

Epoxy-activated monolithic CIM disks seem to be excellent supports for immobilization of protein ligands. The potential use of enzymes, immobilized on monolithic disks for rapid preparative cleavage proteins in solution was investigated. Digestion of complex plasma proteins was demonstrated by using inter-alpha inhibitors with elastase, immobilized on epoxy-activated CIM disks. Recently, a monoclonal antibody against human inter-alpha inhibitor proteins (MAb 69.31) was developed. MAb 69.31 blocks the inhibitory activity of inter-alpha inhibitor proteins to serine proteases. These results suggest that the epitope defined by this antibody is located within or proximal to the active site of the inhibitor molecule. This antibody, immobilized on monolithic disk, was used for very rapid isolation of inter-alpha proteins. The isolated complex protein was used for enzymatic digestion and isolation of cleavage products, especially from inter-alpha inhibitor light chain to elucidate precisely the target sequence for MAb 69.31 by N-terminal amino acid sequencing. Bovine pancreatic elastase immobilized on monolithic disk cleaves inter-alpha inhibitor protein complex into small fragments which are still reactive with MAb 69.31. One of these proteolytic fragments was isolated and partially sequenced. It could be shown that this sequence is located at the beginning of two proteinase inhibitor domains of the inter-alpha inhibitor light chain (bikunin). Elastase immobilized on monolithic disk offers a simple and rapid method for preparative isolation of protease cleavage fragments. The immobilized enzyme is stable and still active after repeated runs. A partial or complete digestion can be achieved by varying the flow rate.

Purchase full article

Call

Send SMS

Add to Skype

You'll need Skype CreditFree via Skype

Full view

M. Bartolini, V. Cavrini, V. Andrisano

Journal of Chromatography A, 1065 (2005) 135-144

The aim of the present study was to optimize the preparation of an immobilized acetylcholinesterase (AChE)-based micro-immobilized enzyme reactor (IMER) for inhibition studies. For this purpose two polymeric monolithic disks (CIM, 3 mm × 12 mm i.d.) with different reactive groups (epoxy and ethylendiamino) and a packed silica column (3 mm × 5 mm i.d.; Glutaraldehyde-P, 40 μm) were selected as solid chromatographic supports. All these reactors were characterized in terms of rate of immobilization, stability, conditioning time for HPLC analyses, optimum mobile phase and peak shape, aspecific interactions and costs. Advantages and disadvantages were defined for each system. Immobilization through Schiff base linkage gave more stable reactors without any significant change in the enzyme behaviour; monolithic matrices showed very short conditioning time and fast recovery of the enzymatic activity that could represent very important features in high throughput analysis and satisfactory reproducibility of immobilization yield. Unpacked silica material allowed off-line low costs studies for the optimization of the immobilization step.

Purchase full article

Full view

2004

H. Podgornik, A. Podgornik

Journal of Chromatography B, 799 (2004) 343–347

Different chromatographic methods including chromatofocusing are used for separation of manganese peroxidase (MnP) isoforms and their isolation from the fungal growth medium. We tested strong anion exchange methacrylate based monolithic columns as a stationary phase for fast separation of MnP’s. Sodium acetate buffers of two different pH values (6 and 4) were used for formation of reproducible pH gradient. The entire cycle, involving analysis and column regeneration, was completed in 3 min. Use of pH gradient showed better MnP isoform separation comparing to the salt gradient, while application of combined pH–salt gradient, resulted in further improvement.

Purchase full article

Full view