2013

D. A. Ribeiro, D. F. Passos, H. C. Ferraz, L. R. Castilho

Journal of Chromatography B, 938 (2013) 111-118

Both recombinant and plasma-derived factor IX concentrates are used in replacement therapies for the treatment of haemophilia B. In the present work, the capture step for a recombinant FIX (rFIX) purification process was investigated. Different strong anion-exchange chromatography media (the resins Q Sepharose® FF and Fractogel® TMAE, the monolith CIM® QA and the membrane adsorber Sartobind® Q) were tested for their rFIX binding capacity under dynamic conditions. In these experiments, crude supernatant from CHO cells was used, thus in the presence of supernatant contaminants and mimicking process conditions. The highest dynamic binding capacity was obtained for the monolith, which was then further investigated. To study pseudoaffinity elution of functional rFIX with Ca2+ ions, a design of experiments to evaluate the effects of pH, NaCl and CaCl2 on yield and purification factor was carried out. The effect of pH was not statistically significant, and a combination of no NaCl and 45 mM CaCl2 yielded a good purification factor combined with a high yield of active rFIX. Under these conditions, activity yield of rFIX was higher than the mass yield, confirming selective elution of functional, γ-carboxylated rFIX. Scaling-up of this process 8 fold resulted in very similar process performance. Monitoring of the undesired activated FIX (FIXa) revealed that the FIXa/FIX ratio (1.94%) was higher in the eluate than in the loaded sample, but was still within an acceptable range. HCP and DNA clearances were high (1256 and 7182 fold, respectively), indicating that the proposed process is adequate for the intended rFIX capture step.

Purchase full article

Full view

J. A. Martin, P. Parekh, Y. Kim, T. E. Morey, K. Sefah, N. Gravenstein, D. M. Dennis, W. Tan

PLOS ONE, March 2013, Volume 8, Issue 3, e57341

Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT). Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug), and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction) and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.

Read full article

Full view

E. Mota, A. Sousa, U. Černigoj, J. A. Queiroz, C. T. Tomaz, F. Sousa

Journal of Chromatography A (2013)

The demand for high-purity supercoiled plasmid DNA to be applied as a vector for new therapeutic strategies, such as gene therapy or DNA vaccination has increased in the last years. Thus, it is necessary to implement an analytical technique suitable to control the quality of the supercoiled plasmid as a pharmaceutical product during the manufacturing process. The present study describes a new methodology to quantify and monitor the purity of supercoiled plasmid DNA by using a monolithic column based on anion-exchange chromatography. This analytical method with UV detection allows the separation of the plasmid isoforms by combining a NaCl stepwise gradient. The specificity, linearity, accuracy, reproducibility and repeatability of the method have been evaluated, and the lower quantification and detection limits were also established. The validation was performed according to the guidelines, being demonstrated that the method is precise and accurate for a supercoiled plasmid concentration up to 200 μg/mL. The main advantage achieved by using this monolithic column is the possibility to quantify the supercoiled plasmid in a sample containing other plasmid topologies, in a 4 min experiment. This column also permits the assessment of the supercoiled plasmid DNA present in more complex samples, allowing to control its quality throughout the bioprocess. Therefore, these findings strengthen the possibility of using this monolithic column associated with a powerful analytical method to control the process development of supercoiled plasmid DNA production and purification for therapeutic applications.

Purchase full article

Full view

S. Haberl, M. Jarc, A. Štrancar, M. Peterka, D. Hodžić, D. Miklavčič

J Membrane Biol, DOI 10.1007/s00232-013-9580-5

The use of plasmid DNA (pDNA) as a pharmaceutical tool has increased since it represents a safer vector for gene transfer compared to viral vectors. Different pDNA extraction methods have been described; among them is alkaline lysis, currently the most commonly used. Although alkaline lysis represents an established method for isolation of pDNA, some drawbacks are recognized, such as entrapment of pDNA in cell debris, leading to lower pDNA recovery; the time-consuming process; and increase of the volume due to the buffers used, all leading to increased cost of production. We compared the concentration of extracted pDNA when two methods for extracting pDNA from Escherichia coli were used: alkaline lysis and a method based on membrane electroporation, electroextraction. At the same time, we also studied the effect of different pulse protocols on bacterial inactivation. The concentration of pDNA was assayed with anion exchange chromatography. When alkaline lysis was used, two incubations of lysis time (5 and 10 min) were compared in terms of the amount of isolated pDNA. We did not observe any difference in pDNA concentration regardless of incubation time used. In electroextraction, different pulse protocols were used in order to exceed the pDNA concentration obtained by alkaline lysis. We show that electroextraction gives a higher concentration of extracted pDNA than alkaline lysis, suggesting the use of electroporation as a potentially superior method for extracting pDNA from E. coli. In addition, electroextraction represents a quicker alternative to alkaline lysis for extracting pDNA.

Purchase full article

Full view

B. Gabor, U. Černigoj, M. Barut, A. Štrancar

Journal of Chromatography A, 1311 (2013) 106-114

HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0 kbp, 5.2 kbp and 14.0 kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport.

Purchase full article

Full view

M. Limonta, N. Lendero Krajnc, U. Vidic, L. Zumalacárregui

Biochemical Engineering Journal 80 (2013) 14-18

The pIDKE2 plasmid is the main component of the CIGB's candidate vaccine against Hepatitis C virus (HVC), which is being used in HCV chronically-infected individuals during clinical trials phase 1 and 2. The designed downstream process of pIDKE2 plasmid produces up to 179 g/year. In order to conduct further improvements, modelling of the downstream process was performed. A methodology based on process analysis tools, such as experimental design and modelling was established to identify factors with the highest influence on production cost and the amount of annual plasmid. Taking into account that the pIDKE2 downstream process designed is in its initial stages of development, CIM technology was evaluated as a new manufacturing process on lab scale. Purity and recovery of CIM technology was better than porous particle matrix, thus SuperPro Designer was used in order to simulate the purification process. Cost efficiency optimization of the pIDKE2 downstream process was done with the simulation model.

Purchase full article

Full view

P. Fernandes, C. Peixoto, VM Santiago, EJ Kremer, AS Coroadinha and PM Alves

Gene Therapy (2012), 1–8

Canine adenovirus type 2 (CAV-2) vectors overcome many of the clinical immunogenic concerns related to vectors derived from human adenoviruses (AdVs). In addition, CAV-2 vectors preferentially transduce neurons with an efficient traffic via axons to afferent regions when injected into the brain. To meet the need for preclinical and possibly clinical uses, scalable and robust production processes are required. CAV-2 vectors are currently produced in E1-transcomplementing dog kidney (DK) cells, which might raise obstacles in regulatory approval for clinical grade material production. In this study, a GMP-compliant bioprocess was developed. An MDCK-E1 cell line, developed by our group, was grown in scalable stirred tank bioreactors, using serum-free medium, and used to produce CAV-2 vectors that were afterwards purified using column chromatographic steps. Vectors producedin MDCK-E1 cells were identical to those produced in DK cells as assessed by SDS-PAGE and dynamic light scatering measurements (diameter and Zeta potential). Productivities of ~109 infectious particles (IP) ml-1 and 2x103 IP per cell were possible. A downstream process using technologies transferable to process scales was developed, yielding 63% global recovery. The total particles to IP ratio in the purified product (<20:1) was within the limits specified by the regulatory authorities for AdV vectors. These results constitute a step toward a scalable process for CAV-2 vector production compliant with clinical material specifications.

Attachments

Full view

P. Gerster, E.-M. Kopecky, N. Hammerschmidt, M. Klausberger, F. Krammer, R. Grabherr, C. Mersich, L. Urbas, P. Kramberger, T. Paril, M. Schreiner, K. Nöbauer, E. Razzazi-Fazeli, A. Jungbauer

Journal of Chromatography A, 1290 (2013) 36-45(2013) 36-45

A chromatographic process based on monoliths for purification of infective baculovirus without prior concentration step has been established. Baculovirus produced in Spodoptera frugiperda cells (Sf-9) were harvested by centrifugation, filtered through 0.8 μm filters and directly loaded onto radial 1 mL anion exchange monoliths with a channel size of 1.5–2.0 μm operated at a volumetric flow rate of one bed volume per minute. Optional an epoxy monolith was used as pre-column to reduce interfering compounds and substances influencing the capacity of anion exchange monoliths for baculovirus infectious virus could be eluted with a step gradient at salt concentrations of 440 mM NaCl. Recovery of infectious virus was highly influenced by composition and age of supernatant and ranged from 20 to >99% active baculovirus. Total protein content could be reduced to 1–8% and DNA content to 38–48% in main virus fraction. Infective virus could be 52-fold concentrated within 20.5 h and simultaneously an 82-fold volume reduction was possible when loading 1150 mL (2.1 × 108 pfu/mL) onto 1 mL scale support.

Purchase full article

Full view

A. Steyer, I. Gutierrez-Aguire, M. Kolenc, S. Koren, D. Kutnjak, M. Pokorn, M. Poljšak-Prijatelj, N. Rački, M. Ravnikar, M. Sagadin, A. Fratnik Steyer, N. Toplak

Journal of Clinical Microbiology, November 2013

Mammalian orthoreoviruses (MRV) are known to cause mild enteric and respiratory infections in humans. They are widespread and infect a broad spectrum of mammals. We report here the first case of MRV detected in a child with acute gastroenteritis, which showed the highest similarity to MRV reported recently in European bats. Stool sample examination of the child was negative for most common viral and bacterial pathogens. Reovirus particles were identified by electron microscopic examination of both stool suspension and cell culture supernatant. The whole genome sequence was obtained with the Ion Torrent next generation sequencing platform. Prior to sequencing, stool sample suspension and cell culture supernatant were pre-treated with nucleases and/or the convective interaction media (CIM) monolithic chromatographic method to purify and concentrate the target viral nucleic acid. Whole genome sequence analysis revealed that the Slovenian SI-MRV01 isolate was most similar to MRV found in bat in Germany. High similarity was shared in all genome segments, with nucleotide and amino acid identities between 93.8-99.0% and 98.4-99.7%, respectively. It was shown that CIM monolithic chromatography alone is an efficient method for enriching the sample in viral particles before nucleic acid isolation and next generation sequencing application.

Purchase full article

Full view

E. A. Ponomareva, M. V. Volokitina, D. O. Vinokhodov, E. G. Vlakh, T. B. Tennikova

Anal Bioanal Chem (2013) 405:2195–2206

Immobilized enzyme reactors (IMERs) produced by the covalent attachment of ribonuclease A to macroporous
methacrylate-based monolithic supports using different experimental approaches are discussed and compared. Enzyme immobilization was carried out by direct covalent binding, as well as through attachment via a polymer spacer. The kinetic properties of an IMER operating in either recirculation mode or zonal elution mode were studied. Additionally, the effect of flow rate on the bioconversion efficiency of each IMER sample was examined.

Purchase full article

Full view

M. V. Volokitina, E. G. Vlakh, G. A. Platonova, D. O. Vinokhodov, T. B. Tennikova
J. Sep. Sci. 2013, 36, 2793-2805

Two ribonuclease A bioreactors based on lab-made macroporous monolithic columns and intended for polynucleotide degradation were prepared using in situ free-radical polymerization. Different methods of enzyme immobilization were applied. In the first case, the biocatalyst molecule was attached to the solid surface via direct covalent binding, while in the second bioreactor the flexible-chain synthetic polymer was used as an intermediate spacer. The effect of temperature, substrate flow rate, and loaded sample volume on the biocatalytic efficiency of the immobilized enzyme was examined. The kinetic parameters of the enzymatic degradation of synthetic polycytidylic acid were calculated and compared to those found for hydrolysis with soluble ribonuclease A. The monitoring of substrate splitting was carried out by means of fast anion-exchange HPLC on an ultra-short monolithic column (disk) using off- and on-line analytical approaches.

Purchase full article

Full view

E. Maksimova, E. Vlakh, E. Sinitsyna, T. Tennikova
J. Sep. Sci. 2013, 36, 3741–3749

Ultrashort monolithic columns (disks) were thoroughly studied as efficient stationary phases for precipitation–dissolution chromatography of synthetic polymers. Gradient elution mode was applied in all chromatographic runs. The mixtures of different flexible chain homopolymers, such as polystyrenes, poly(methyl methacrylates), and poly(tert-butylmethacrylates) were separated according to their molecular weights on both commercial poly(styrene-co divinylbenzene).
disks (12 id × 3 mm and 5 × 5 mm) and lab-made monolithic columns (4.6 id × 50 mm) filled with supports of different hydrophobicity. The experimental conditions were optimized to reach fast and highly efficient separation. It was observed that, similar to the separation of monoliths of other classes of (macro)molecules (proteins, DNA, oligonucleotides), the length of column did not affect the peak resolution.
A comparison of the retention properties of the poly(styrene-co-divinylbenzene) diskshaped monoliths with those based on poly(lauryl methacrylate-co-ethylene dimethacrylate), poly(butyl methacrylate-co-ethylene dimethacrylate), and poly(glycidyl methacrylate-co-ethylene dimethacrylate) supports demonstrated the obvious effect of surface chemistry on the resolution factor. Additionally, the results of the discussed chromatographic mode on the fast determination of the molecular weights of homopolymers used in this study were compared to those established by SEC on columns packed with sorbent beads of a similar nature to the monoliths.

Purchase full article

Full view

Roy N D‘Souza, Ana M Azevedo, M Raquel Aires-Barros, Nika Lendero Krajnc, Petra Kramberger, Maria Laura Carbajal, Mariano Grasselli, Roland Meyer & Marcelo Fernández-Lahore

Vol. 1, No. 5, Pharmaceutical Bioprocessing (2013)

Downstream processing is currently the major bottleneck for bioproduct generation. In contrast to the advances in fermentation processes, the tools used for downstream processes have struggled to keep pace in the last 20 years. Purification bottlenecks are quite serious, as these processes can account for up to 80% of the total production cost. Coupled with the emergence of new classes of bioproducts, for example, virus-like particles or plasmidic DNA, this has created a great need for superior alternatives. In this review, improved downstream technologies, including aqueous two-phase systems, expanded bed adsorption chromatography, convective flow systems, and fibre-based adsorbent systems, have been discussed. These adaptive methods are more suited to the burgeoning downstream processing needs of the future, enabling the cost-efficient production of new classes biomaterials with a high degree of purity, and thereby hold the promise to become indispensable tools in the pharmaceutical and food industries.

Purchase full article

Full view

P. Fagan, C. Wijesundera

Journal of Separation Science, 10.1002/jssc.201201156

Eicosapentaenoic and docosahexaenoic acids are important bio-active fatty acids in fish oils. Monolithic HPLC columns both in the polymeric cation exchange (silver-ion) and RP formats were compared with corresponding packed columns for the isolation of these acids from tuna oil ethyl esters. Monolithic columns in both formats enabled rapid (typically 5–10 min) separations compared with packed columns (30 min). Polymeric monolithic silver-ion disc column rapidly furnished mixtures of eicosapentaenoic and docosahexaenoic esters (90% purity) within 5–10 min, but was unable to resolve individual esters. A preparative version of the same column (80 mL bed volume) enabled isolation (>88% purity) of 100 mg quantities of eicosapentaenoic and docosahexaenoic esters from esterified tuna oil within 6 min. Baseline separation of eicosapentaenoic and docosahexaenoic esters was achieved on all RP columns. The results show that there is potential to use polymeric monolithic cation exchange columns for scaled-up preparation of eicosapentaenoic and docosahexaenoic ester concentrates from fish oils.

Purchase full article

Full view

J. A. Martin, P. Parekh, Y. Kim, T. E. Morey, K. Sefah, N. Gravenstein, D. M. Dennis, W. Tan

PLOS ONE, March 2013, Volume 8, Issue 3, e57341

Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT). Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug), and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction) and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.

Read full article

Full view

A. Ghanem, R. Healey, F. G. Adly

Analytica Chimica Acta 760 (2013) 1-15

Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cellmediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.

Purchase full article

Full view

A. Romanovskaya, L. P. Sarina, D. H. Bamford, M. M. Poranen

Journal of Chromatography A (2013)

Recent advances in the field of RNA interference and new cost-effective approaches for large-scale double-stranded RNA (dsRNA) synthesis have fuelled the demand for robust high-performance purification techniques suitable for dsRNA molecules of various lengths. To address this issue, we developed an improved dsRNA purification method based on anion exchange chromatography utilizing convective interaction media (CIM) monolithic columns. To evaluate column performance we synthesized a selection of dsRNA molecules (58–1810 bp) in a one-step enzymatic reaction involving bacteriophage T7 DNA-dependent RNA polymerase and phi6 RNA-dependent RNA polymerase. In addition, small interfering RNAs (siRNAs) of 25–27 bp were generated by Dicer digestion of the genomic dsRNA of bacteriophage phi6. We demonstrated that linearly scalable CIM monolithic quaternary amine (QA) columns can be used as a fast and superior alternative to standard purification methods (e.g. LiCl precipitation) to obtain highly pure dsRNA preparations. The impurities following Dicer treatment were quickly and efficiently removed with the QA CIM monolithic column, yielding siRNA molecules of high purity suitable for potential therapeutic applications. Moreover, baseline separation of dsRNA molecules up to 1 kb in non-denaturing conditions was achieved.

Purchase full article

Full view

2012

J. Lee, H. T. Gan, S. M. Abdul Latiff , C. Chuah, W. Y. Lee, Y.-S. Yang, B. Loo, S. K. Ng, P. Gagnon

Journal of Chromatography A, 1270 (2012) 162-170

We introduce a chromatography method for purification of large proteins and viruses that works by capturing them at a non-reactive hydrophilic surface by their mutual steric exclusion of polyethylene glycol (PEG). No direct chemical interaction between the surface and the target species is required. We refer to the technique as steric exclusion chromatography. Hydroxyl-substituted polymethacrylate monoliths provide a hydrophilic surface and support convective mass transport that is unaffected by the viscosity of the PEG. Elution is achieved by reducing PEG concentration. Selectivity correlates with molecular size, with larger species retained more strongly than smaller species. Retention increases with PEG size and concentration. Salts weaken retention in proportion to their concentration and Hofmeister ranking. Retention is enhanced near the isoelectric point of the target species. Virus binding capacity was measured at 9.9 × 1012 plaque forming units per mL of monolith. 99.8% of host cell proteins and 93% of DNA were eliminated. Mass recovery exceeded 90%. IgM capacity was greater than 60 mg/mL. 95% of host cell proteins were eliminated from IgM produced in protein-free media, and mass recovery was up to 90%. Bioactivity was fully conserved by both viruses and antibodies. Process time ranged from less than 30 min to 2 h depending on the product concentration in the feed stream.

Purchase full article

Full view

H. M. Oksanen, A. Domanska, D. H. Bamford
Virology Volume 434, Issue 2, 20 December 2012

We report anion exchange chromatographic purification method powerful for preparation of virus particles with ultra pure quality. The technology is based on large pore size monolithic anion exchangers, quaternary amine (QA) and diethylaminoethyl (DEAE). These were applied to membrane-containing icosahedral bacteriophage PRD1, which bound specifically to both matrices. Virus particles eluted from the columns retained the ir infectivity, and were homogenous with high specific infectivity. The yields of infectious particles were up to 80%. Purified particles were recovered at high concentrations, approximately 5mg/ml, sufficient for virological, biochemical and structural analyses. We also tested the applicability of the monolithic anion exchange purification on a filamentous bacteriophage phi 05_2302. Monolithic ion exchange chromatography is easily scalable and can be combined with other preparative virus purification methods.

 Purchase full article

Full view

C. Scott

BioProcess International, November 2012, pg. 31-42

Monoclonal antibodies (MAbs) remain the largest segment of the biopharmaceutical market, but they are not the only recombinant proteins in development. Remember that the first biopharmaceutical approved for sale was recombinant insulin — a hormone — back in the 1980s. And proteins aren't the only recombinant biologics. The sector has expanded since then to include gene therapies and viral vectors, vaccines, and even cells and tissues. Companies around the world are developing such products for cancer, neurological, infectious disease, metabolic, autoimmune, and cardiovascular disorders, to name just the most prominent. And although MAbs are finally fulfilling their “magic bullet” promise, many other approaches are becoming available to drug developers targeting those markets — and others.

Meanwhile, funding challenges are increasing emphasis on manufacturing and development efficiencies. Even though total funding of the biotechnology industry has rebounded since the 2008 recession — from about US$13 billion for the United States industry in 2008 to about $21 billion in 2010, for example — a growing share of that money is going to the less risky investments. According to Ernst & Young's 2011 Beyond Borders report, that means mature and already-profitable companies are taking a larger portion of the financial pie.

At the same time, the average number of drug approvals per year has decreased: from about three dozen in the United States from 1996 to 2004 to under two dozen for the years since. And even though markets are opening up in China, India, and other countries, the cost of doing business on a global scale makes it no easy task to reach them. So biopharmaceutical companies need to curb the rise of development and manufacturing costs. Single-use technologies are helping with the latter in large part. And platform technologies have helped antibody makers shorten development times by starting out with certain rules of thumb — rather than trying out hundreds of available purification technologies, for example, in many different combinations to find what works best for every new product candidate.

Do nonantibody makers have similar options when it comes to their own process development work? As is so often the case in bioprocessing, the answer to that question is “It depends. ..” on the product class; on the expression system; and on the regulatory history of the company, process, and type of molecule.

Read full article

Full view