On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2005

Plasmids are excellent genetic vectors and have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years, plasmids are intensively investigated for gene therapy purposes and genetic vaccination. In this case, plasmid DNA (pDNA) of high purity is required. To follow such demands, several chromatographic steps are commonly needed. In the case of buffer compatibility, columns can be connected in-line to overcome time consuming and yield lowering multiple chromatographic steps. Since each of the unit operations contributes to the dispersion, the resolution is further decreased by each chromatographic step. This drawback might be surmounted by combining several chromatography steps into a single chromatography column. This approach is known as multidimensional or conjoint liquid chromatography (CLC).

Attachments

Full view

2004

By using a combination of two CIM® tube monolithic columns, OH and DEAE chemistry, we were able to successfully purify plasmid DNA from bacterial culture without using RNase. Purified plasmid DNA is very pure, since common contaminants, such as proteins, genomic DNA, endotoxins and RNA were under the detection limit. The scale up units produced according to cGMP standard are already used for the purification of plasmid DNA for gene therapy purposes on industrial scale.

Attachments

Full view

2003

Plasmids are episomes that have been recognized in few eukaryotic and most prokaryotic species. Some plasmids are excellent genetic vectors and they have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years plasmids were intensively used for gene therapy purposes (1). Most often purification starts with the cells harvest followed by alkaline lysis step in which ribonuclease A (RNase) is typically used. After that, plasmid DNA can be precipitated and used directly or can be further purified by different methods (2). Currently, several chromatographic methods, such as ion-exchange, size exclusion, affinity, and hydrophobic chromatography, have been demonstrated in plasmid purification (3). Until now a limited number of small scale purification methods without use of RNase were published. Convective Interaction Media CIM® is a monolithic chromatographic support for which has been shown that is very efficient for the separation of large molecules, such as proteins, DNA and viruses (4).

Attachments

Full view

Plasmids are episomes that have been recognized in few eukaryotic and most prokaryotic species. Some plasmids are excellent genetic vectors and they have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years plasmids were intensively used for gene therapy purposes (1).Most often purification starts with the cells harvest followed by alkaline lysis step in which ribonucleaseA (RNase) is typically used. After that plasmid DNA can be precipitated and used directly or can be further purified by different methods (2).Currently, several chromatographic methods, such as ion-exchange, size exclusion, affinity, and hydrophobic chromatography, have been demonstrated in plasmid purification (3). Until now a limited number of small scale purification methods without use of RNase were published. Convective Interaction Media CIM®is a monolithic chromatographic support for which has been shown that is very efficient for the separation of large molecules, such as proteins, DNA and viruses (4).

Attachments

Full view

2002

The progress in gene-therapy and DNA vaccination leads to a growing demand of therapeutic applicable plasmid DNA (pDNA). To guarantee the supply for the clinical trials and finally for the market new pDNA production processes, which meet all regulatory requirements, have to be developed. Conventional small scale techniques can not easily be transferred to the manufacturing scale (technical reasons and safety considerations). We developed a generic large scale process for highly purified plasmids “free” of bacterial contaminants which works without enzymes, detergents (except SDS during the cell lysis) and organic solvents.

Attachments

Full view

Most commonly plasmids are manufactured by fermentation of E. coli. In the cells several isoforms of the plasmid are generated: supercoiled (sc), open circular (oc) and linear as well as dimeric forms. After alkaline lysis plasmids are accompanied in solution by genomic DNA (gDNA), RNA, proteins and other cell compounds [1]. In addition to these impurities, the plasmid isoforms have to be separated efficiently in order to get a final product containing > 95 % of ccc form [2]. Chromatographic resins used in biotechnology are usually designed for the separation of polypeptides, providing only low capacity for polynucleotides (< 1 mg/mL).

In this work we present an optimised purification step for large scale purification of therapeutic applicable pDNA, based on an alternative chromatography resin (CIM Convective Interaction Media®).

Attachments

Full view

2000

Production and downstream processing in biotechnology requires fast and accurate control of each step in the process. Liquid chromatography of biopolymers on so-called soft supports is typically slow, often causing significant product degradation. One way of improving these boundary conditions in liquid chromatography is the use of monolithic adsorbents. The basis for fast separations with such media is a reduced mass transfer resistance owing to the fact that pore diffusion is practically non-existent. Chromatography with compact, porous units such as monolithic columns is being used increasingly for analytical and preparative separations of biopolymers with apparent molecular mass ranging from several thousand to up to several million.

This paper describes the use of a CIM® Convective Interaction Media for fast purification of plasmid DNA as well as for the concentration of viruses. Plasmid DNAs are circular duplex DNA molecules that are maintained stable as episomal genetic information within bacteria. They play an important role in gene technology - they are used for applications such as transformation, sequencing, transfection studies, etc. These applications require satisfactory purity of used plasmid DNA. For purification of plasmid DNA from Escherichia coli, monolithic units as anion-exchangers (CIM® DEAE and QA disks) were used. Separation of RNA from DNA as well as concentration of plasmid DNA were performed on the same disks.

All the methods for concentration of viruses, in general, are expensive, time-consuming and they are frequently not very successful. Therefore an attempt to bind viruses on an anion exchanger (CIM® DEAE disk) and elute bound virions in small volume (concentration) was done. As a model virus, measles was chosen. Using CIM® DEAE disk concentration of the measles viruses was successfully performed in less than 10 minutes.

Attachments

Full view

Production and down-stream processing in biotechnology requires fast and accurate control of each step in the process. Liquid chromatography of biopolymers on so-called soft supports is typically slow, often causing significant product degradation. One way of improving these boundary conditions in liquid chromatography is the use of monolithic adsorbents. The basis for fast separations with such media is a reduced mass transfer resistance owing to the fact that pore diffusion is practically non-existent. Chromatography with compact, porous units such as monolithic columns is being used increasingly for analytical and preparative separations of biopolymers with apparent molecular mass ranging from several thousand to up to several million.

This paper describes the use of a CIM® Convective Interaction Media for fast purification of plasmid DNA as well as for the concentration of viruses.

Plasmid DNAs are circular duplex DNA molecules that are maintained stable as episomal genetic information within bacteria. They play an important role in gene technology - they are used for applications such as transformation, sequencing, transfection studies, etc. These applications require satisfactory purity of used plasmid DNA. For purification of plasmid DNA from Escherichia coli, monolithic units as anion-exchangers (CIM® DEAE and QA disks) were used. Separation of RNA from DNA as well as concentration of plasmid DNA were performed on the same disks.

All the methods for concentration of viruses, in general, are expensive, time-consuming and they are frequently not very successful. Therefore an attempt to bind viruses on an anion exchanger (CIM® DEAE disk) and elute bound virions in small volume (concentration) was done. As a model virus, measles was chosen. Using CIM® DEAE disk concentration of the measles viruses was successfully performed in less than 10 minutes.

Attachments

Full view