On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2024

The recent push to make a viable mRNA based vaccine against COVID 19 highlighted the significance of modified nucleosides, as one of the candidate vaccines failed precisely because only regular NTPs were used to produce the mRNA 1 The groundbreaking discovery made by Karikó and Weissman in 2005 demonstrating that mRNA synthesized with ΨTP instead of UTP exhibits reduced immunogenicity, was recognized with the Nobel Prize in Chemistry in 2023 Modified nucleosides can change the structure, stability and even affect the rate of translation of the mRNA As more and more research is done in this field, we focused on developing a method enabling at line IVT reaction monitoring using two naturally occurring modified nucleotides 1 methylpseudouridin triphosphate (N1meΨTP and 5 methylcytidine triphosphate (m 5 CTP), on a multimodal CIMac PrimaS ® column using PATfix® analytical system The developed method facilitates the monitoring of in vitro transcription (reactions by accommodating the quantification of modified nucleotides (N1meΨTP and/or m 5 CTP), unmodified nucleotides and mRNA across varying ratios.

Attachments

Full view

Lipid nanoparticles (are leading non viral carriers for therapeutics, offering versatility in encapsulating diverse payloads Their manufacturing superiority over viral systems allows for modularity, speed, and scalability However, this modularity poses challenges in purification and characterization due to sample uniqueness LNPs require downstream processing for in vivo application and adherence to critical quality attributes ( Analytical methods for those currently predominantly require undesirable particle disassembly beforehand.

Monolithic columns offer ideal chromatography for LNPs due to laminar flow, minimizing shear forces, and surface modification enabling selective options Here is presented the purification method for LNPs on monolithic columns utilizing the PATfix® analytical chromatographic system, efficiently separating LNPs from free cargo.

An analytical scale two dimensional chromatographic tool was developed It delivers comprehensive characterization of encapsulation efficiency, nucleic acid content, degradation, and separation of co encapsulated cargos, without any sample pre treatment Highly tunable and automatable, this method maximizes efficiency and facilitates precise separation of LNP populations.

Attachments

Full view

2023

Immobilized enzyme reactors (IMERs) stand as innovative biotechnological constructs, seamlessly merging the catalytic proficiency of enzymes with the advantages of solid support matrices. Immobilized enzymes offer notable benefits such as improved stability, the potential to operate within a continuous system over extended durations, reusability of the enzyme, as well as reduced production costs and product purification steps. The aim of this study was to prepare a functional IMER on monolithic support for efficient pDNA linearization, that could be used in in vitro transcription reaction for messenger ribonucleic acid (mRNA) production.

Attachments

Full view

The cost of mRNA production is driven by IVT reagents, particularly the co-transcriptional capping reagents. Optimization of mRNA yield is therefore crucial for lowering the cost of mRNA production. To monitor the IVT reaction over time, we implemented a rapid at-line HPLC monitoring of consumption of NTPs and production of mRNA, with a sub-3 min read-out. Use of CIMac PrimaS analytical column allowed us to determine and adjust key IVT components that influence the kinetics of mRNA production and are critical for optimization of continuous addition of reagents, i.e. fed-batch IVT.

Fed-batch reactions can also be performed by continuous feeding, requiring automated control system. We used Ambr® 250 bioreactor platform, demonstrating for the first time its potential for mRNA production. First we designed a fed-batch IVT reaction in a thermal shaker, sampled and analyzed at-line by CIMac PrimaS analytics. Based on NTP consumption kinetics, the Ambr® 250 protocol was then designed to feed a defined mixture of NTP-Mg 2+ continuously.

Attachments

Full view

New development in the modern biotechnology increased the need for plasmid DNA (pDNA) with sizes above 10 kbp (large pDNA), but their chromatographic purification is often challenging due to low process yields and column clogging. There are 
indirect proofs that open circular (OC) pDNA isoform is the main troublemaker due to its physical entrapment within the narrow channels of chromatographic media. Increasing the channel size of chromatographic support should decrease the negative 
impact and improve the chromatographic performance. The aim of the study was to use novel Convective Interaction Media® (CIM®) monolith chromatographic columns with large, 6 µm channels, for analytical and preparative separation of pDNA. The effect of supercoiled (SC), OC and linear (LIN) pDNA isoforms on chromatographic performance was thoroughly evaluated.

Attachments

Full view

mRNA has been at the forefront of both scientific and general public interests from the start of the COVID-19 pandemic. However, there are still limited options available for rapid characterization of mRNA containing samples. For precise characterization of an mRNA sample, first the presence and concentration of mRNA molecules in the sample needs to be identified. In the second step, any contaminants in the sample coming from the IVT reaction need to be identified and quantified. All major components of the IVT reaction; nucleotides, capping reagent, enzymes and DNA template may be present in the mRNA sample. In addition, impurities such as shorter, incomplete RNA fragments, and in particular, dsRNA may also be present. Contaminants may also come from the mRNA in vitro instability, caused by spontaneous hydrolyzation of the mRNA backbone. These issues can be mitigated using appropriate analytical tools throughout the mRNA production and purification steps.

Attachments

Full view

2022
  • How to increase the binding capacity of Oligo dT18?
  • Can a design of experiment approach be used to optimise Oligo dT binding?
  • Is the monolith available in a high throughput format for liquid handlers?
  • Is it possible to use a 96-well plate Oligo dT device?
Buffer conditions (salt, additives) influence mRNA binding on Oligo dT. Three contributing factors were identified and tested: NaCl, MgCl2 and Gu-HCl, the latter leading to a capacity of >6 mg/mL.

Abstract:

Affinity-based chromatographic isolation of mRNA is robust and simple, lending itself as a useful industrial platform. mRNA constructs typically contain a 3’ polyA tail to increase stability in vivo, thereby affording the possibility of affinity purification using oligo-deoxythymidinic acid (Oligo dT) probes covalently coupled to a solid support. Poly-adenylated mRNA forms a stable hybrid with Oligo dT under high-salt conditions which is destabilized when the salt is removed, allowing mRNA to be released. Typical dynamic binding capacity (DBC) of CIMmultus Oligo dT for mRNA is 2-4 mg/mL; ever higher IVT productivity will require higher binding capacities. Screening experiments to elucidate factors affecting CIMmultus Oligo dT binding capacity for mRNA were performed in CIM® 96-well Oligo dT format. A simplified model identified NaCl, guanidine hydrochloride (Gu-HCl) and MgCl2 concentration as the key factors contributing to DBC. Buffer chemistry, buffer pH, salt type and mRNA concentration had little or no effect on DBC.

Attachments

Full view

Sample displacement chromatography (SDC) is a chromatographic technique that utilizes differences in relative binding affinities of components in a sample mixture under chromatographic conditions. Here, we use SDC approach with CIM® C4 HLD monoliths under hydrophobic interaction chromatography (HIC) conditions to separate plasmid DNA (pDNA) isoforms under overloading conditions, where supercoiled (SC) isoform acts as a displacer of open circular (OC) or linear isoform. High purity of SC isoform is beneficial for use of plasmids as vaccines, transfecting agents for production of gene therapy viral vectors, or as starting material for linearization prior to IVT reaction in production of mRNA vaccines.

Attachments

Full view

The cost of mRNA production is driven by IVT reagents, particularly the capping reagent. Optimization of mRNA yield is therefore crucial for lowering the cost of mRNA production. In order to monitor IVT reaction over time, we implemented a rapid at-line HPLC monitoring of consumption of NTPs with concomitant production of mRNA, with a sub-3 min read-out. Use of CIMac PrimaS analytical column allowed us to determine and adjust key IVT components that influence the kinetics of mRNA production and are critical for optimization of continuous addition of reagents, i.e. fed-batch IVT.

Attachments

Full view

CIM® PrimaS column family combines multimodal anion exchange/hydrogen bonding properties, binding molecules with predominantly negative charge. It is used as capture method for purification of mRNA from IVT (in-vitro transcription) reaction mixture with high binding capacity. High salt wash is used to elute the plasmid and other IVT components from the column without affecting binding of ssRNA.

Attachments

Full view

Microvolume spectrophotometers are commonly used as quick and easy method to measure concentration and purity of nucleic acids. DSP process for purification of mRNA includes unit operations with salt concentrations up to 2.75 M (HIC) or up to 1.25 M (Oligo dT) during load and low salt concentrations during elution.

Attachments

Full view

mRNA has been at the forefront of both scientific and general public interests from the start of the COVID-19 pandemic. The demand for the mRNA product has been incredible for the last couple of years. However, there are still limited options available for a rapid mRNA quantification and characterization. In this work, mRNA analytics using a CIMac Oligo dT column is presented. mRNA is a specialized group of RNAs that carries the blueprints for building proteins from the cell’s DNA in the nucleus to the ribosomes in the cytoplasm. One of the features of mRNA molecules is a polyadenylated (poly(A)) tail on the 3’ end, that can be up to 250 nucleotides long. This feature enables mRNA to bind to the Oligo dT column. HPLC Oligo dT analytics provide a solution for fast and reproducible quantification of mRNA throughout all the process steps of mRNA production and purification. The presented method was validated using mFix4, an uncapped mRNA analog produced in-house, 3969 nt long molecule with a poly(A )tail length of 95 nucleotides.

Attachments

Full view

Messenger RNA (mRNA) is becoming a major contributor in the fields of gene therapy and vaccines, including those developed in response to the COVID-19 pandemic. Convective Interaction Media® (CIM®) Styrene divinylbenzene (SDVB) monolithic columns are promising for high resolution purification and separation of mRNA, enabling large-scale production of this molecule. This study demonstrates the ability to prepare homogeneous SDVB monoliths with desired chromatographic properties and economical analytics over the whole size range.

Attachments

Full view

Agarose gel electrophoresis (AGE) analysis is an important method for monitoring of plasmid DNA (pDNA) quality, with ability to separate pDNA isoforms (sc, oc, lin, multimer). Plasmid linearization can be monitored for purposes of producing starting material for mRNA production. Electrophoretic conditions and, more importantly, matrix used for sample dilution before gel loading can affect analytical results. We have observed that purified linear pDNA shows an additional band in AGE analysis of the sample in water medium, which can lead to misinterpretation of results. 

Attachments

Full view

2021

The recently demonstrated efficacy of mRNA-based Covid-19 vaccines has shown promise of this therapeutic format, but also highlighted the need for higher efficiency of mRNA production to meet enormous needs for global vaccine supply.

Typical mRNA production process involves three key steps: 1) plasmid DNA (pDNA) production in supercoiled (sc) isoform, linearization and purification, 2) in-vitro transcription (IVT) reaction and 3) mRNA purification.

Here we present a chromatographic toolbox and mRNA IVT synthesis for integrated mRNA production from pDNA to mRNA purification, including in-process analytics. This high yield process reduces the overall number of purification steps required, improves recoveries, results in extra low protein impurity and allows for very efficient dsRNA removal.

Attachments

Full view

The IVT reaction is one of the most expensive steps in mRNA production process and its optimization to reach high mRNA yield is of key importance Standard mRNA quantification techniques like absorbance and fluorescence based assays are time consuming and cannot be performed at line as the IVT reaction progresses In addition, other reaction components like nucleotides and pDNA interfere in the analytical results and reduce the method’s accuracy A new approach shown here uses CIMac PrimaS™ analytical HPLC column to separate and quantify several key IVT components with a very short run time, enabling fast “at line” tracking

Attachments

Full view

Optimizing processing steps in sc pDNA isolation is critical for obtaining good process yields as well as high product purity. PATfix platform with convective chromatography media (e.g. monolith) offers a rapid analytical method to characterize complex biomolecular mixtures and gives immediate feedback during process development. E coli lysis represents such a challenging step, where multiple critical quality attributes need to be identified and critical processing parameters optimized. This approach leads to better yields and product purity, allowing for simplified downstream steps. A new PATfix analytical platform presented here uses CIMac pDNA column, to separate and characterize plasmid from impurities, allowing for easy optimization of key parameters such as RNA removal.

Attachments

Full view

In mRNA production process, downstream purification of in vitro transcription (IVT) reaction often relies on precipitation methods which cannot provide resolution, recovery, or reproducibility to consistently produce a safe and effective product with good process economics. mRNA is a large biomolecule (mass of 1000 nt is ~ 150 kDa and >100 nm in diameter) for which porous particle chromatography lacks the ability to support high capacity and throughput to achieve good process economics. Convective flow chromatography media (e.g. monoliths) is an optimal platform for purification. A fully scalable chromatographic purification process is presented for a posttranscriptionally capped in vitro transcribedmRNA.

Attachments

Full view

2020

Linearised pDNA is currently the starting point of In-Vitro-Transcription processes to synthesize mRNA. Large scale purification protocols for manufacturing of pDNA used for Gene Therapy applications typically include two chromatography steps. The first step captures both linear, open circular and supercoiled pDNA species. The polishing step enriches supercoiled pDNA, while discarding other isoforms. We describe a single-step-capture strategy to maximize the recovery of pDNA for further linearization.

Attachments

Full view

The increasing demand for messenger RNA (mRNA) as a therapeutic product requires larger production scales and more efficient extraction techniques. In this poster, fast and efficient way to purify poly-adenylated mRNA using affinity chromatography on CIMmultus™ Oligo dT column is presented.

The poly-adenylated tail of mRNA interacts with covalently bound oligo dT ligands in high-salt loading conditions, where electrostatic repulsion between negatively charged backbones of both, mRNA and oligo dT, are reduced and H-bonding in T-A base pair is emphasized. High salt concentration additionally screens out attractive electrostatic interactions between mRNA and other components in the process sample, thus facilitating aggregate reduction in purified product.

Attachments

Full view