On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2019

This poster shows how Multi-Angle Light Scattering detector and Fluorescence detector couppled to PATfix analytical system can be used to track extracellular vesicles through purification process. Samples were analyzed by analytical size exclusion chromatography (SEC). On SEC cell culture components diffuze into pores of chromatographic media and are separated (mostly) based on size. Particles larger than the media pore size are excluded in the void peak. This peak represents extracellular vesicles including apoptosomes, microvesicles and exosomes as well as cell debris and aggregates.

Attachments

Full view

2014

Exosomes are nano-sized vesicles that are released by many different cell types. They are involved in the transport of a wide range of signalling molecules, including mRNA, microRNA and proteins. Exosomes have been found into body fluids and multiple roles have been ascribed to exosomes, in particular in cell signalling where it has been demonstrated their correlation to disease progression and their overexpression as specific tumour cell biomarkers, suggesting their important role in their diagnosis.

This initial screening oriented towards the separation of exosomes from a cell culture supernatant, has been developed by BIA Separations in collaboration with Exosomics Siena. Exosomes used for this study were cultivated in two different cell lines, MeWo and LNCap, and, after the harvesting, a relatively pure target molecule was obtained after several centrifugations, filtrations and batch affinity capture step with a commercial purification kit. In order to speed-up the process and bring current DSP on a higher level, a novel purification approach based on chromatography, using CIM® monolithic columns was investigated. Monolithic supports represent a new generation of chromatographic media. Due to their large inner channel diameters and enhanced mass transfer characteristics, methacrylate monoliths offer efficient and fast separation of large biomolecules like vescicles, pDNA, viruses and monoclonal antibodies. High binding capacity, good product recovery and resolution are also benefits of monoliths. Different samples, (Standard batch purified exosomes, Culture supernatant filtered, Culture supernatant non-filtered), derived from MeWo and LNCap culture media,, were screened. QA, SO3, DEAE and OH CIM 1mL tube - 6μm pore size were screened. CIM® QA - 6μm pores was chosen.

Attachments

Full view

2004

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3]. The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].
Anion-exchange CIM® (Convective Interaction Media) monolithic columns allow fast and flow unaffected separation of several biomolecules, including nucleic acids [5].

Attachments

Full view

2003

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA-based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods of GMO detection in food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods, for DNA isolation from food, cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anionexchange, ion-pair reverse-phased, and slalom chromatography. Of these, anionexchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view

1999

Synthetic oligonucleotides play an important role as novel therapeutic agents.

One of the most important, but also very time-consuming steps in synthetic oligonucleotides production is their purification. Due to their high-resolution power, reversed-phase and ion-exchange chromatography are the most widely used techniques for these purposes. For the reversed-phase separations oligonucleotides need to be kept as 5'-O-dimethoxytrityl derivatives until the purification process is completed and only then the detritylation takes place. Both these steps lower the yield of the production process. In the contrary, ion-exchange chromatography offers applications to deprotected oligonucleotides directly and that is the reason why this chromatography mode is more preferred.

Convective Interaction Media (CIM) are newly developed polymerbased monolithic supports allowing high resolution separations which can be carried out within seconds in the case of analytical units - disks. This is due to predominantly convective mass transport of biomolecules between the mobile and stationary phase and very low dead volumes. Additionally, the dynamic binding capacity is not affected by high flow rates.

In this work weak (DEAE) anion-exchange CIM supports have been successfully applied for the analysis and purification of synthetic oligonucleotides.

Attachments

Full view