On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2012

The present study describes a new methodology to quantify and monitor the quality of supercoiled (sc) plasmid DHA (pDLIA), using a monolithic column based on anion-exchange chromatography. This analytical method with UV detection allows distinguishing the plasmid isoforms by a NaCl stepwise gradient. The selectivity, Linearity, accuracy, reproducibility and repeatability of the method have been evaluated, and the lower quantification and detection limits were also established. The validation was performed according to the guidelines, being demonstrated that the method is precise and accurate for a sc plasmid concentration up to 200 µg/mL. The main advance achieved by using this monolithic method is the possibility to quantify the sc plasmid in a sample containing other plasmid topologies, in a 4 minutes experiment. This work also intends to evaluate the possibility to assess the sc pDNA present in more complex samples, allowing the control of the samples recovered from different bioprocess steps.

Attachments

Full view

Glycosylation is one of nature mechanism for invreasing the diversity of protein structures affecting biophysical vjaracterostocs and bioactivity. Glycoproteins exist as mixture of different isoforms ("glycoforms"). In this mixture a group od different glyco components is attached to individual glycosylation site. Different glyco componets attached to the same site may have diggerent effect on biophysical charachteristics of glycoproteins. The type of glycosylation and the degree of heterogenity are important for many reasons starting from stability, activity, clinical efficency (toxicity, pharmacokinetics, immunogenicity), to standardization and patentability.

Thus, it is necessary to separate glycoforms and as much as possible to difine the heterogenity i.e. population of of glyco components attached to the singele glycosysilation site.

External invertase is a widely usef model for studying the influance of the glyco-component on protein stability. External invertase from yeast Sccharomyces cerevisiae has 14 potential N-glycosylation sites in the sequence, 13 of which are fully or partially glycosylated with olygomannans of varying sizes.

Attachments

Full view

Extensive research in the last two decades has led to the realization of Immunoglobulin M (IgM) as a potential therapeutic and diagnostic agent for autoimmune diseases, infectious diseases and as an AIDS and cancer vaccine. Growing interest in these molecules has created a need for an accurate, rapid and simple analytical method to measure IgM concentrations during the production (in-process control) in cell culture supernatants as well as in all purification steps in the downstream processing.

Convective interaction media (CIM) monolithic columns has been increasingly recognized as a quantification tool for large molecules. Affinity ligands like protein A and protein G are the most common ligands used for antibody capture and analysis.

Attachments

Full view

There is an increasing demand for highly purified immunoglobulin G since they have found wide range of potential application in immunodiagnostics and immunotherapy.

Human IgG (hIgG) consists of four subclasses (IgG1, IgG2, IgG3 and IgG4) that show differences in some of their physicochemical characterictics and biological properties.

The present research project aims to separate subclasses of hIgG using monolithic stationary phase by SMB technology.

Attachments

Full view

2010

Application of plasmid DNA for gene therapy and vaccination has gained huge interest in last two decades. Topological homogeneity and impurity content are crucial for therapeutic usage of pDNA. Major influence on achieving regulatory demands in pDNA production has downstream processing and in order to get optimal purity different purification techniques have to be included. It was demonstrated that methacrylate monoliths can be used for efficient purification process of plasmid DNA. High dynamic binding capacities and high flow rates of methacrylate monolith enabled excelent purity and productivity.

Attachments

Full view

Protein L binds certain types of kappa light chains containing Fv and Fab fragments prepared from antibodies. In the case of IgG's the strong binding affinity refers only to human, mouse and rat species. It offers an advantage over Protein A and G as it binds to kappa light chains regardless of heavy chain subclass and can therefore binds up to 60% of IgG antibodies from human serum sample.

The main goal of our work was the preparation and characterization of CIM Protein L disks. First, Protein L disks with different densities of Protein L on the support were prepared in order to define the dependance of the IgG capacity on the amount of the bound Protein L. Further on, the method of characterization of Protein L disk using IgG was developed. In the end, the stability of the developed CIM Protein L disks in different solutions was tested in order to define the operating and storage conditions.

Attachments

Full view

2009

Application of plasmid DNA for gene therapy and vaccination has gained substantial interest in the last two decades. Topological homogeneity and impurity content are crucial for therapeutic usage of pDNA. Downstream processing has major influence on achieving regulatory demands in pDNA production and in order to get optimal purity different purification techniques have to be applied. It was demonstrated that methacrylate monoliths can be used for efficient purification process of plasmid DNA. High dynamic binding capacities and high flow rates of methacrylate monolith enable excellent purity and productivity.

Attachments

Full view

2008

Anion-exchange chromatography is fundamental in downstream processing of plasmids both as a process and analytical technique. CIM anion-exchange monolithic columns have already been successfully used for the industrial scale purification of pharmaceutical grade small plasmid DNA [1].

In this work we report about the use of the newly developed monolithic analytical column intended for plasmid DNA determination in terms of its analytical performance. Higher degree of sensitivity, precision and accuracy is necessary in order to determine the quality of clinical grade DNA intended for therapeutic use. Plasmids purified from Escherichia coli fermentation exist predominantly in the supercoiled form (SC) the other two topoisomers present in the final product are mostly the open circular (OC) and linear forms [2]. Different chromatographic conditions were tested and the separation was optimized in terms of buffer and pH selection as well as in terms of gradient slope and column length. The results were compared to the results obtained with established analytical methods.

Attachments

Full view

2007

A number of IgM monoclonal antibodies are currently in development for treatment of autoimmune disease, infectious disease, and cancer. Growing interest in these molecules has created a need for an accurate, rapid, simple analytical method to measure IgM levels in cell culture supernatants, and to document the distribution of IgM and protein contaminants in chromatography fractions. High performance protein A columns are used for this application with IgG monoclonals, but IgMs are easily denatured by the harsh conditions required for elution of most affinity ligands. However, IgM monoclonals often exhibit strong retention on either cation exchangers, or anion exchangers, or both, making ion exchange chromatography a potential candidate for this application.

The large size of IgMs makes them a major challenge to particle-based chromatography media. Pentameric IgM has a mass of about 0.96 Md, and hexameric IgM about 1.15 Md. Their diffusion constants are about 2.5 x10-7 cm2/sec, about twice as slow as IgG. Since particle-based chromatography media mostly rely on diffusion for mass transport, both resolution and capacity are im- Figure 4 illustrates a modified anion exchange gradient configuration for monitoring the amount of IgM expressed in cell culture supernatants. A wash step was introduced to better remove con- paired, and increasingly so at higher flow rates.

Monolithic ion exchangers are characterized by an interconnected system of channels with diameters ranging 0.5 to 2.0 microns. This pore architecture supports convective flow, which conserves high resolution at high flow rates.[1] The lack of a void volume removes the major source of dispersion in chromatographic systems. This contributes to sharper peaks, which improves both resolution and sensitivity. Capacity is also conserved at high flow rates. This permits use of a microcolumn format that minimizes assay time and buffer consumption. This combination of features should make monoliths effective analytical tools for IgM.

Attachments

Full view

IgM can be used for several purposes such as early detection of certain diseases or, when labelled, localized cancer tumours. For their purification commonly chromatography is used. Methods for purifying such big molecules (M.w. around 950 kDa) are usually long and time consuming since these molecules have extremely low mobility therefore mass transfer between mobile and stationary phases is significantly reduced. When purified using affinity mode, serious decrease in IgM activity can occur because of long exposure to low pH in which they are unstable. Furthermore, because of their size, the IgM capacity of convenctional resins is rather low. CIM monoliths were already successfully used for fast separation of large molecules. In this work we tested applicability of anion-exchange CIM monolithic columns for preparation of IgM.

Attachments

Full view

2006

Gene therapy has already shown some great results in treatment and cure of some monogene diseases, such as diabetes. While the use of genetically modified viruses raises safety concerns, synthetic formulations of genes inserted in plasmids are regarded as safer. At present, most clinical trials involve plasmids smaller than 10 kb. However, the concern that regulation of the functioning of the gene is ensured together with the expectation of the progression of gene therapy to multigene disfunctions, like cancer or complex nevrodegenerative disfunctions (Alzheimer disease), will require the production of larger plasmids [1].

Attachments

Full view

2005

The Inter-alpha inhibitor protein family is comprised of complex plasma proteins that consist of a combination of multiple polypeptide chains (light and heavy chains) covalently linked by a chondroitin sulfate chain. The major forms found in human plasma in high concentration are Inter-alpha inhibitor (Ial), which consists of two heavy chains (Hl & H2) and a single light chain, and Pre-alpha Inhibitor (Pal), which consists of one heavy (H3) and one light chain (Fig 1). The light chain (bikunin) is known to inhibit several serine proteases, such as trypsin, human leukocyte chistase, plasmin and cathepsin G which are involved in inflammation, sepsis, tumor invasion and formation of metastasis. Recently, a monoclonal antibody against human inter-alpha inhibitor proteins (MAli 6931) was developed in our laboratory.

Attachments

Full view

The rapidly growing interest in the area of proteomics induces intensive efforts to find robust, automated and sensitive high-throughput analytical tools. In this context, the concept of solid-phase digestion (ex. trypsin immobilization on a solid support[1]) has received great attention in the last years. Trypsin (EC 3.4.21.4) has been covalently immobilized on different monolithic supports and resulting bioreactors used as immobilized enzyme reactors (IMERs) for on-line digestion, peptide separation and peptide mapping. Bioreactors efficiencies were evaluated with different recombinant proteins after on-line digestion. The technique used for the separation and identification of peptides was high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS).

Attachments

Full view

Plasmids are excellent genetic vectors and have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years, plasmids are intensively investigated for gene therapy purposes and genetic vaccination. In this case, plasmid DNA (pDNA) of high purity is required. To follow such demands, several chromatographic steps are commonly needed. In the case of buffer compatibility, columns can be connected in-line to overcome time consuming and yield lowering multiple chromatographic steps. Since each of the unit operations contributes to the dispersion, the resolution is further decreased by each chromatographic step. This drawback might be surmounted by combining several chromatography steps into a single chromatography column. This approach is known as multidimensional or conjoint liquid chromatography (CLC).

Attachments

Full view

Immobilized Metal-Affinity Chromatography (IMAC) is a chromatographic separation technique primarily used for the purification of proteins with exposed histidine residues and for recombinant proteins with histidine tags. Technique uses covalently bound chelating compounds on chromatographic supports to entrap metal ions, such as Cu2+, Ni2+, Zn2+, Co2+, which serve as affinity ligands for various proteins. CIM Convective Interaction Media is a monolithic chromatographic support intended for separation of large biomolecules, such as proteins, DNA and also viruses.

Attachments

Full view

Immobilized Metal-Affinity Chromatography (IMAC) is a separation technique primarily intended for the purification of proteins with exposed histidine tags. Technique uses covalently bound chelating compounds on chromatographic supports to entrap metal ions, which serve as affinity ligands for various proteins. Iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), carboxymethylated aspartic acid (CM-Asp), and N,N,N’-tris(carboximethyl) ethylenediamine (TED) are chelating compounds, most often used to entrap metal ions, such as Cu2+, Ni2+, Zn2+, Co2+ etc.

Convective Interaction Media CIM® is a monolithic support, which provides high rates of mass transfer at low pressure drops. It has been shown that CIM® supports are very efficient for the separation of large molecules, such as proteins and DNA (1). Recent publication has proved that CIM IMAC column can be used for separation of histidine containing peptides (2). Since efficient separation of large molecules is one of the main advantages of CIM® support, purification of His-tagged recombinant proteins on CIM IMAC column should be not only feasible but also simple, fast and efficient.

Attachments

Full view

A large number of diagnostics and several therapeutic monoclonal antibodies (mAbs) have been approved worldwide and many more are expected to be approved and licensed in the near future. The reality and the fact that purification or downstream processing can contribute up to 80% of the total production costs of a biopharmaceutical, enhance the need for efficient purification methods. Liquid chromatography provide high level of purity required for human use, increases productivity and has therfore become the method of choice for purification of biopharmaceuticals.

Purification of mAbs can be achieved by a number of chromatographic methods, Protein A and Protein G affinity chromatography being especially powerful enabling high product purity with single chromatographic step.

Attachments

Full view

Human plasma is a rich and readily accessible source for the detection of diagnostic markers and therapeutic targets for various human diseases. These are usually proteins that are present in human plasma in extremely low concentrations and are often masked by the high abundance proteins like immunoglobulin G (IgG) and human serum albumin (HSA), which represent over 75 % of all proteins. In order to enable the detection of potential biomarkers, IgG and HSA should be efficiently removed from the starting sample. In this work an affinity and a pseudoaffinity chromatographic column, used for an efficient removal of IgG and HSA from human plasma, were thoroughly characterized. A CIM monolithic column bearing Protein G ligands was
used for the removal of IgG, and a column bearing an anti-HSA dye was used for the depletion of HSA.

Attachments

Full view

Fast diagnosis of different infections is a crucial for a successful medical treatment. For diagnosis of certain diseases, separation of IgG and IgM in human serum is required to prevent interference or competing. This is usually achieved by adding adsorbent containing antihuman antibodies to the sample. Incubation from half to one hour is needed to achieve the complete removal of the antibody.

A quicker way to achieve the removal of antibody would be the use of a chromatographic support with specific ligand, which selectively binds the antibody. For example, a Protein G column can be used for removal of IgG. This is faster, but also much more expensivfe way of removing IgG's.

CIM Convective Interaction Media stationary phases represent a novel generation of stationary phases for liquid chromatography. Because of their monolithic structure, being designed for the separation and purification of macromolecules, they exhibit a higher dynamic capacity for very alrge molecules in comparison to traditional stationary phases, combined with much shorter process time that further result in a decreased loss of the biologic activity.

In this work, we present low price ligands (coupled to CIM chromatographic support), which can be used for efficient separation of IgG and IgM antibodies.

Attachments

Full view

2004

By using a combination of two CIM® tube monolithic columns, OH and DEAE chemistry, we were able to successfully purify plasmid DNA from bacterial culture without using RNase. Purified plasmid DNA is very pure, since common contaminants, such as proteins, genomic DNA, endotoxins and RNA were under the detection limit. The scale up units produced according to cGMP standard are already used for the purification of plasmid DNA for gene therapy purposes on industrial scale.

Attachments

Full view