On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2009

Adeno-associated virus (AAV) vectors continue to hold immense promise as gene transfer vehicles for a variety of gene therapy applications. Numerous pre-clinical and human clinical studies have been undertaken with rAAV, employing several of the identified serotypes to leverage their differing tissue tropism to correct a broad spectrum of genetic diseases. Despite the advantageous characteristics of rAAV and the extensive research into pre-clinical applications, production and purification scale-up continues to limit recombinant AAV (rAAV) use in large clinical trials that require even moderate vector doses. Therefore, AGTC has developed a high-yielding, scalable rAAV production system in suspension BHK cells that employs co-infection with two hybrid rHSV-rAAV vectors to provide all cis and trans-acting rAAV elements and the requisite helper virus functions for rAAV manufacturing.

In contrast to traditional, resin-based chromatography methods for rAAV purification, we have developed a two-step chromatographic process that employs a novel anion exchange Convective Interaction Media® monolithic column (CIM® monolith, BIA Separations) capture step followed by affinity chromatography (AVB Sepharose™, GE Healthcare), which yields rAAV vector stocks in very high purity. This scalable process allows significant reduction in processing time due to the high capture step dynamic binding capacity, flow rates and resolution. The resulting overall chromatography recovery compares favorably to our first and second generation processes which used three-step, resin-based column chromatography and membrane-based two step chromatography, respectively.

The CIM QA-AVB process was scaled to accommodate 10 L suspension production runs and was successful at recovering as much as 1 × 1015 purified AAV1 DRP in a single day. The process is highly reproducible and it is applicable for the purification of multiple AAV serotypes with over 95% purity and overall yield of > 30%.

Attachments

Full view

Avir Green Hills Biotechnology is developing innovative seasonal and pandemic influenza vaccines based on the deletion of the NS1 gene (delNS1 vaccine). The vaccine is replication-defective and applied intranasally. Currently, an H1N1 monovalent vaccine is being tested in a clinical phase I study, with an H5N1 avian influenza vaccine soon to be initiated. A production and purification process, which was successfully employed for the pilot-scale production of H1N1 and H5N1 influenza A vaccine virus, will be presented. Data on the selection of chromatographic media, relevant to eliminate downstream purification bottlenecks will also be discussed.

Details on obtained virus yields as well as impurity removal will be given. The vaccine virus is produced in static cell culture using Vero (African Green monkey kidney) cells. After clarification the vaccine virus bulk is purified using the same scheme for all different subtypes: Concentration by tangential ultra filtration, AEX chromatography using a CIM QA monolith, and an SEC polishing step allowing for buffer exchange. This purification scheme guarantees the thorough depletion of host cell DNA and total protein. In addition, an HPLC method for quantifying influenza virus in the vaccine with the use of CIM monolithic columns will be presented and the results will be compared with haemagglutination method.

Attachments

Full view

In an average influenza season, we face hundreds of thousands of influenza cases. Up to 50,000 deaths per year can be ascribed to influenza epidemics. Nevertheless, this is relatively harmless compared to the current, permanent threat of a worldwide pandemic caused by avian influenza.

AVIR Green Hills Biotechnology is developing innovative seasonal and pandemic influenza vaccines based on the deletion of the NS1 gene (ΔNS1 vaccine) [1]. The vaccine is replication-defective and applied intranasally. Currently, an H1N1 monovalent vaccine is being tested in a clinical phase I study and clinical trials with H5N1 avian influenza vaccine will follow in fall 2007.

A production process, which was successfully employed for the pilot-scale production of H1N1 and H5N1 influenza A virus is presented here. The upstream process is performed according to the specific requirements of the respective influenza subtypes. Currently, 15 L batches are produced in cell factories using Vero (African green monkey kidney) cells. The vaccine bulk is purified by using the very same scheme for all different subtypes. For purification, the cell culture supernatant is clarified by centrifugation and the virus is concentrated by tangential ultra filtration. The concentrated virus is subsequently purified in two chromatographic steps which were co-developed with BIA Separations d.o.o.: First, an anion exchange monolithic column is used. This is followed by size exclusion chromatography for polishing and buffer exchange.

This purification scheme guarantees the thorough depletion of host cell DNA and total protein, and recovers at least 25% of the infectious virus.

Attachments

Full view

2008

During last decades different methods for purification of influenza viruses have been described. Most of these methods were developed for purification of egg derived influenza virus which is still the main production system for influenza vaccine viruses. Since cell culture based technology is gaining more and more importance, the need for alternative, efficient and scaleable purification methods has risen. Chromatography is becoming a method of choice for purification of viruses. Relevance of this technique was recently demonstrated also for influenza viruses. Methacrylate monoliths are characterized by large channel diameter, high surface accessibility and convective mass transport. As a consequence they have high binding capacity for large molecules, enable high flow rates at low pressure drop and therefore increase productivity. Recently it has been proven that methacrylate monolithic columns can also be used for purification and concentration of different viruses.

It was the purpose of this work to explore possibilities for purification of influenza viruses on ion exchange methacrylate monoliths. Different subtypes of influenza A and influenza B virus were tested employing various ion exhange monolithic columns.

Attachments

Full view

During the last decade important developments in molecular medicine and adenoviral vector design have been achieved, leading to an increased use of adenoviral vectors in clinical gene therapy protocols. One of the main advantages of the adenovirus is their ability to replicate at high titres in permisive cell lines. The availability of large quantities of adenoviral vector preparations is recognized as an important limitation to pre-clinical and clinical studies. Consequently there is a global focus on large scale production of adenoviral vectors, providing high titres combined with fast, effective and reliable purification methods.

Attachments

Full view

2007

A number of IgM monoclonal antibodies are currently in development for treatment of autoimmune disease, infectious disease, and cancer. Growing interest in these molecules has created a need for an accurate, rapid, simple analytical method to measure IgM levels in cell culture supernatants, and to document the distribution of IgM and protein contaminants in chromatography fractions. High performance protein A columns are used for this application with IgG monoclonals, but IgMs are easily denatured by the harsh conditions required for elution of most affinity ligands. However, IgM monoclonals often exhibit strong retention on either cation exchangers, or anion exchangers, or both, making ion exchange chromatography a potential candidate for this application.

The large size of IgMs makes them a major challenge to particle-based chromatography media. Pentameric IgM has a mass of about 0.96 Md, and hexameric IgM about 1.15 Md. Their diffusion constants are about 2.5 x10-7 cm2/sec, about twice as slow as IgG. Since particle-based chromatography media mostly rely on diffusion for mass transport, both resolution and capacity are im- Figure 4 illustrates a modified anion exchange gradient configuration for monitoring the amount of IgM expressed in cell culture supernatants. A wash step was introduced to better remove con- paired, and increasingly so at higher flow rates.

Monolithic ion exchangers are characterized by an interconnected system of channels with diameters ranging 0.5 to 2.0 microns. This pore architecture supports convective flow, which conserves high resolution at high flow rates.[1] The lack of a void volume removes the major source of dispersion in chromatographic systems. This contributes to sharper peaks, which improves both resolution and sensitivity. Capacity is also conserved at high flow rates. This permits use of a microcolumn format that minimizes assay time and buffer consumption. This combination of features should make monoliths effective analytical tools for IgM.

Attachments

Full view

IgM can be used for several purposes such as early detection of certain diseases or, when labelled, localized cancer tumours. For their purification commonly chromatography is used. Methods for purifying such big molecules (M.w. around 950 kDa) are usually long and time consuming since these molecules have extremely low mobility therefore mass transfer between mobile and stationary phases is significantly reduced. When purified using affinity mode, serious decrease in IgM activity can occur because of long exposure to low pH in which they are unstable. Furthermore, because of their size, the IgM capacity of convenctional resins is rather low. CIM monoliths were already successfully used for fast separation of large molecules. In this work we tested applicability of anion-exchange CIM monolithic columns for preparation of IgM.

Attachments

Full view

2005

The Inter-alpha inhibitor protein family is comprised of complex plasma proteins that consist of a combination of multiple polypeptide chains (light and heavy chains) covalently linked by a chondroitin sulfate chain. The major forms found in human plasma in high concentration are Inter-alpha inhibitor (Ial), which consists of two heavy chains (Hl & H2) and a single light chain, and Pre-alpha Inhibitor (Pal), which consists of one heavy (H3) and one light chain (Fig 1). The light chain (bikunin) is known to inhibit several serine proteases, such as trypsin, human leukocyte chistase, plasmin and cathepsin G which are involved in inflammation, sepsis, tumor invasion and formation of metastasis. Recently, a monoclonal antibody against human inter-alpha inhibitor proteins (MAli 6931) was developed in our laboratory.

Attachments

Full view

Immobilized Metal-Affinity Chromatography (IMAC) is a chromatographic separation technique primarily used for the purification of proteins with exposed histidine residues and for recombinant proteins with histidine tags. Technique uses covalently bound chelating compounds on chromatographic supports to entrap metal ions, such as Cu2+, Ni2+, Zn2+, Co2+, which serve as affinity ligands for various proteins. CIM Convective Interaction Media is a monolithic chromatographic support intended for separation of large biomolecules, such as proteins, DNA and also viruses.

Attachments

Full view

Immobilized Metal-Affinity Chromatography (IMAC) is a separation technique primarily intended for the purification of proteins with exposed histidine tags. Technique uses covalently bound chelating compounds on chromatographic supports to entrap metal ions, which serve as affinity ligands for various proteins. Iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), carboxymethylated aspartic acid (CM-Asp), and N,N,N’-tris(carboximethyl) ethylenediamine (TED) are chelating compounds, most often used to entrap metal ions, such as Cu2+, Ni2+, Zn2+, Co2+ etc.

Convective Interaction Media CIM® is a monolithic support, which provides high rates of mass transfer at low pressure drops. It has been shown that CIM® supports are very efficient for the separation of large molecules, such as proteins and DNA (1). Recent publication has proved that CIM IMAC column can be used for separation of histidine containing peptides (2). Since efficient separation of large molecules is one of the main advantages of CIM® support, purification of His-tagged recombinant proteins on CIM IMAC column should be not only feasible but also simple, fast and efficient.

Attachments

Full view

Viruses have proven to be useful vectors for gene therapy purposes. As therapeutics for human use they must be pure and contaminant free. Traditionally, viruses are purified by complicated and time consuming methods such as CsCl density gradient centrifugation or similar. In recent years liquid chromatography has became interesting method for virus purification. It provides high level of purity required for human use and increases productivity. Traditional chromatographic supports were mostly designed for purification of proteins and as such are commonly inappropriate for viruses. Alternative to traditional chromatographic support are methacrylate monoliths (CIM monoliths), characterized by large channel diameter, high surface accessibility and convective mass transport.

The aim of this work was to characterize CIM supports for separation and possible purification of a model virus Tomato mosaic virus (ToMV) from crude plant material.

Attachments

Full view

A large number of diagnostics and several therapeutic monoclonal antibodies (mAbs) have been approved worldwide and many more are expected to be approved and licensed in the near future. The reality and the fact that purification or downstream processing can contribute up to 80% of the total production costs of a biopharmaceutical, enhance the need for efficient purification methods. Liquid chromatography provide high level of purity required for human use, increases productivity and has therfore become the method of choice for purification of biopharmaceuticals.

Purification of mAbs can be achieved by a number of chromatographic methods, Protein A and Protein G affinity chromatography being especially powerful enabling high product purity with single chromatographic step.

Attachments

Full view

Human plasma is a rich and readily accessible source for the detection of diagnostic markers and therapeutic targets for various human diseases. These are usually proteins that are present in human plasma in extremely low concentrations and are often masked by the high abundance proteins like immunoglobulin G (IgG) and human serum albumin (HSA), which represent over 75 % of all proteins. In order to enable the detection of potential biomarkers, IgG and HSA should be efficiently removed from the starting sample. In this work an affinity and a pseudoaffinity chromatographic column, used for an efficient removal of IgG and HSA from human plasma, were thoroughly characterized. A CIM monolithic column bearing Protein G ligands was
used for the removal of IgG, and a column bearing an anti-HSA dye was used for the depletion of HSA.

Attachments

Full view

Fast diagnosis of different infections is a crucial for a successful medical treatment. For diagnosis of certain diseases, separation of IgG and IgM in human serum is required to prevent interference or competing. This is usually achieved by adding adsorbent containing antihuman antibodies to the sample. Incubation from half to one hour is needed to achieve the complete removal of the antibody.

A quicker way to achieve the removal of antibody would be the use of a chromatographic support with specific ligand, which selectively binds the antibody. For example, a Protein G column can be used for removal of IgG. This is faster, but also much more expensivfe way of removing IgG's.

CIM Convective Interaction Media stationary phases represent a novel generation of stationary phases for liquid chromatography. Because of their monolithic structure, being designed for the separation and purification of macromolecules, they exhibit a higher dynamic capacity for very alrge molecules in comparison to traditional stationary phases, combined with much shorter process time that further result in a decreased loss of the biologic activity.

In this work, we present low price ligands (coupled to CIM chromatographic support), which can be used for efficient separation of IgG and IgM antibodies.

Attachments

Full view

2004

Immobilized Metal-Affinity Chromatography (IMAC) is a separation technique primarily intended for the purification of proteins with exposed histidine tags. Technique uses covalently bound chelating compounds on chromatographic supports to entrap metal ions, which serve as affinity ligands for various proteins. Iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), carboxymethylated aspartic acid (CM-Asp), and N,N,N’-tris(carboximethyl) ethylenediamine (TED) are chelating compounds, most often used to entrap metal ions, such as Cu2+, Ni2+, Zn2+, Co2+ etc.

Convective Interaction Media CIM® is a monolithic support, which provides high rates of mass transfer at low pressure drops. It has been shown that CIM® supports are very efficient for the separation of large molecules, such as proteins and DNA (1). Recent publication has proved that CIM IMAC column can be used for separation of histidine containing peptides (2). Since efficient separation of large molecules is one of the main advantages of CIM® support, purification of His-tagged recombinant proteins on CIM IMAC column should be not only feasible but also simple, fast and efficient.

Attachments

Full view

Membrane bound heterotrimeric guanine-nucleotide proteins (G-proteins) are the important components of the cellular signal transduction cascade. They are GTPases which cycle between an inactive and an active configuration by catalysing the exchange of GTP for GDP bound to G subunit. In our study we investigated separation of high affinity GTP'S binding proteins (G-proteins) from plasma membrane of porcine brain by HPLC using CIM® (Convective Interaction Media) supports. CIM® supports proved to be an efficient tool for cytosolic protein separation on second or minute time scale. No study of separation of membrane bound proteins by CIM® supports have been done so far.

Attachments

Full view

Traditionally, viruses are purified by time consuming methods such as CsCl density gradient centrifugation or similar. These methods are often inefficient and limited to small scale. In recent years different methods for virus purification, based on ion exchange, gel filtration and affinity chromatography have became popular. Recently, CIM® disk monolithic columns were used for successful concentration of two plant viruses (1) and for improved detection of two human viruses (2). Cucumber mosaic virus (CMV) and Tomato mosaic virus (ToMV) were concentrated and subsequently detected from extremely diluted samples in which they were initially undetectable. Successful concentrations of both viruses encourage us to explore the possibilities of CIM® supports for virus purification. As a model virus ToMV was selected. ToMV is a rod shaped plant virus with a typical size of 300 x 18 nm and isoelectric point at pH 4.6.

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3]. The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].
Anion-exchange CIM® (Convective Interaction Media) monolithic columns allow fast and flow unaffected separation of several biomolecules, including nucleic acids [5].

Attachments

Full view

2003

Traces of DNA in RNA samples represent impurities that could affect results of mRNA quantification and cDNA synthesis. In most cases, the DNA impurities in RNA samples are removed using enzyme deoxyribonuclease (DNase), which specifically breaks down DNA. In order to avoid the addition of DNase into the analyzing sample, the use of immobilized DNase on solid support is recommended. Because of the DNA size, very few supports available on the market enable efficient interaction between immobilized enzyme and DNA.

In recent years a new group of supports named monoliths was introduced. Because of enhanced exchange between mobile and stationary phase separation and bioconversion processes are significantly accelerated. Therefore also the efficiency of DNA removal using immobilised enzyme might be competitive to the degradation with free enzyme.

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view