On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2003

The only four drugs approved for the clinical treatment of Alzheirner’s Disease (tacrine. rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors which act by maintaining high levels of acetylcholine at the muscarinic and nicotinic receptors in the central nervous system. Human acetylcholinesterase (HuAChE) represents a widely studied target enzyme and it is still object of research for the development of new drugs as enzyme inhibitors.

In a previous paper we reported the immobilisation of AChE on a silica based chromatographic column (50 x 4.6 mm 1.0.) The yeld of immobilization and the stability of the AChE-IMER were considered satisfactory, but some problems arose. The length of the IMER and the large amount of enzyme covalently bound to the chromatographic support resulted in catalysis product long elution times and some inhibitors aspecific matrix absorption with delayed enzyme activity recovery. In order to avoid these complications and considering the high rate of AChE enzymatic reaction. we decided to reduce the dimension of the solid support for immobilization, hence the amount of immobilized enzyme, by selecting a monolithic matrix disk (12 x 3 mm I.D.).

CIM® (Convective Interaction Media) monolithic supports (Biaseparations. Lubiana) represent a novel generation of stationary phases used for liquid chromatography, bioconversions, and solid phase synthesis. As opposed to individual particles packed into chromatographic columns, CIM® supports are cast as continuous homogeneous phases and provide high rates of mass transfer at lower back pressure.

In the present work a CIMK disk with immobilised human recombinant acetylcholinesterase (HuAChE-ClM® Disk) was developed. The activity of immohilised enzyme, the long term stability and reproducibility were tested. HuAChE-CIM® disk was applied as an immobilised enzyme micro-reactor (micro-IMER) in on-line HPLC system for inhibitory potency determination of known AChE inhibitors.

Full view

Plasmids are episomes that have been recognized in few eukaryotic and most prokaryotic species. Some plasmids are excellent genetic vectors and they have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years plasmids were intensively used for gene therapy purposes (1). Most often purification starts with the cells harvest followed by alkaline lysis step in which ribonuclease A (RNase) is typically used. After that, plasmid DNA can be precipitated and used directly or can be further purified by different methods (2). Currently, several chromatographic methods, such as ion-exchange, size exclusion, affinity, and hydrophobic chromatography, have been demonstrated in plasmid purification (3). Until now a limited number of small scale purification methods without use of RNase were published. Convective Interaction Media CIM® is a monolithic chromatographic support for which has been shown that is very efficient for the separation of large molecules, such as proteins, DNA and viruses (4).

Attachments

Full view

Traces of DNA in RNA samples represent impurities that could affect results of mRNA quantification and cDNA synthesis. In most cases, the DNA impurities in RNA samples are removed using enzyme deoxyribonuclease (DNase), which specifically breaks down DNA. In order to avoid the addition of DNase into the analyzing sample, the use of immobilized DNase on solid support is recommended. Because of the DNA size, very few supports available on the market enable efficient interaction between immobilized enzyme and DNA.

In recent years a new group of supports named monoliths was introduced. Because of enhanced exchange between mobile and stationary phase separation and bioconversion processes are significantly accelerated. Therefore also the efficiency of DNA removal using immobilised enzyme might be competitive to the degradation with free enzyme.

Attachments

Full view

Plasmids are episomes that have been recognized in few eukaryotic and most prokaryotic species. Some plasmids are excellent genetic vectors and they have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years plasmids were intensively used for gene therapy purposes (1).Most often purification starts with the cells harvest followed by alkaline lysis step in which ribonucleaseA (RNase) is typically used. After that plasmid DNA can be precipitated and used directly or can be further purified by different methods (2).Currently, several chromatographic methods, such as ion-exchange, size exclusion, affinity, and hydrophobic chromatography, have been demonstrated in plasmid purification (3). Until now a limited number of small scale purification methods without use of RNase were published. Convective Interaction Media CIM®is a monolithic chromatographic support for which has been shown that is very efficient for the separation of large molecules, such as proteins, DNA and viruses (4).

Attachments

Full view

2002

The progress in gene-therapy and DNA vaccination leads to a growing demand of therapeutic applicable plasmid DNA (pDNA). To guarantee the supply for the clinical trials and finally for the market new pDNA production processes, which meet all regulatory requirements, have to be developed. Conventional small scale techniques can not easily be transferred to the manufacturing scale (technical reasons and safety considerations). We developed a generic large scale process for highly purified plasmids “free” of bacterial contaminants which works without enzymes, detergents (except SDS during the cell lysis) and organic solvents.

Attachments

Full view

Most commonly plasmids are manufactured by fermentation of E. coli. In the cells several isoforms of the plasmid are generated: supercoiled (sc), open circular (oc) and linear as well as dimeric forms. After alkaline lysis plasmids are accompanied in solution by genomic DNA (gDNA), RNA, proteins and other cell compounds [1]. In addition to these impurities, the plasmid isoforms have to be separated efficiently in order to get a final product containing > 95 % of ccc form [2]. Chromatographic resins used in biotechnology are usually designed for the separation of polypeptides, providing only low capacity for polynucleotides (< 1 mg/mL).

In this work we present an optimised purification step for large scale purification of therapeutic applicable pDNA, based on an alternative chromatography resin (CIM Convective Interaction Media®).

Attachments

Full view

2001

CIM Convective Interaction Media® are polymer-based monolithic supports which were introduced for chromatographic analyses, in-process control, solid phase extraction, and purification of target biomolecules, both on an analytical and on a preparative scale 1, 2. CIM supports perform high-resolution separations within seconds. This is predominantly due to the convective mass transport of the biomolecules between the mobile and stationary phases and the very low dead volume of the separation unit. One of the main concerns in the last few years was the batch-to-batch reproducibility of the monoliths during manufacturing and the possibility of using the monolithic supports for validated analytical methods. The batch-to-batch reproducibility in product preparation as well as its stability during analytical work should fulfill all the requirements for a validated analytical method. To demonstrate that this is possible, we have selected one complex example – the determination of impurities in immunoglobulins (IgGs) where a multidimensional, so called CLC (Conjoint Liquid Chromatography), approach combining the ion exchange and affinity chromatography was needed to properly analyze the sample.

Therefore, two CIM Protein G disks and one CIM QA disk were placed in series in one housing. Binding conditions were optimized in a way that the IgGs were bound to the CIM Protein G disks while Transferrin and Albumin were separated on a CIM QA disk. A complete separation of all three proteins was achieved in five minutes.

Attachments

Full view

2000

Production and downstream processing in biotechnology requires fast and accurate control of each step in the process. Liquid chromatography of biopolymers on so-called soft supports is typically slow, often causing significant product degradation. One way of improving these boundary conditions in liquid chromatography is the use of monolithic adsorbents. The basis for fast separations with such media is a reduced mass transfer resistance owing to the fact that pore diffusion is practically non-existent. Chromatography with compact, porous units such as monolithic columns is being used increasingly for analytical and preparative separations of biopolymers with apparent molecular mass ranging from several thousand to up to several million.

This paper describes the use of a CIM® Convective Interaction Media for fast purification of plasmid DNA as well as for the concentration of viruses. Plasmid DNAs are circular duplex DNA molecules that are maintained stable as episomal genetic information within bacteria. They play an important role in gene technology - they are used for applications such as transformation, sequencing, transfection studies, etc. These applications require satisfactory purity of used plasmid DNA. For purification of plasmid DNA from Escherichia coli, monolithic units as anion-exchangers (CIM® DEAE and QA disks) were used. Separation of RNA from DNA as well as concentration of plasmid DNA were performed on the same disks.

All the methods for concentration of viruses, in general, are expensive, time-consuming and they are frequently not very successful. Therefore an attempt to bind viruses on an anion exchanger (CIM® DEAE disk) and elute bound virions in small volume (concentration) was done. As a model virus, measles was chosen. Using CIM® DEAE disk concentration of the measles viruses was successfully performed in less than 10 minutes.

Attachments

Full view

Convective Interaction Media (CIM) are newly developed polymer-based monolithic supports which were introduced for chromatographic analyses, in-process control, solid phase extraction and laboratory purification of target biomolecules, both on analytical and on preparative scale. CIM supports allow high resolution separations which can, in case of analytical units - disks - be carried out within seconds (Figures 1 and 2). This is due to predominantly convective mass transport of biomolecules between the mobile and stationary phase and low dead volumes. Additionally, the dynamic binding capacity is not affected by high flow rates.

CIM can be scaled up to preparative level. For this purpose, the tubular-shaped monolithic units are prepared and placed in special housings (Figure 3). These preparative tubes are intended for very fast preparative purification of biomolecules from complex mixtures. Due to their special design, which allows radial flow of the liquid through the porous wall of the tube, and due to their low resistance to flow, the separations can be carried out at high flow rates and low back pressures (Figure 4). Small-scale preparative tubes are made of the same material as analytical CIM disks. In this way, the purification and monitoring processes can be performed on the same type of support by applying identical separation modes. The scaling-up from analytical to preparative level can therefore be carried out in a much shorter time, thus considerably reducing the cost of process development. In addition, this speed has an economic potential not only for faster and therefore cheaper production, but it will also lead to better quality and yield of unstable products.

Attachments

Full view

Strains of the anaerobic bacterial genus are thought to play an important role in fiber degradation. sp. Mz5 was previously isolated from the rumen of a black and white Friesian cow and its xylanolytic activity was proved to be at least 1,65 times higher than the activities of all of the compared well known xylan-degrading rumen bacterial species and strains (1). High xylanolytic activity was the reason for partial isolation of its xylanases in order to study their special characteristics and possible biotechnological applications later.

Attachments

Full view

Production and downstream processing in biotechnology requires fast and accurate control of each step in the process. Liquid chromatography of biopolymers on so-called soft supports is typically slow, often causing significant product degradation. One way of improving these boundary conditions in liquid chromatography is the use of monolithic adsorbents. The basis for fast separations with such media is a reduced mass transfer resistance owing to the fact that pore diffusion is practically non-existent [1]. Chromatography with compact, porous units such as monolithic columns is being used increasingly for analytical and preparative separations of biopolymers with apparent molecular mass ranging from several thousand to up to several million [2]. This paper describes the use of a CIM® Convective Interaction Media [3] for fast in-process analyses and preparative separations (up-scaling) of pharmaceutically relevant biopolymers such as clotting factor IX. Human factor IX is a vitamin K-dependent multidomain glycoprotein synthesized in liver [4]. The absence or a defect of factor IX causes haemophilia B, a genetic disease in which the clotting cascade is disturbed. The concentration of factor IX in human plasma is about 5 μg/ml (0.1 μM). Because of the low concentration in human plasma, isolation of clotting factor IX has been performed by a combination of different chromatographic methods. However, it has not been possible to remove vitronectin, one of the final contaminants from factor IX purified with conventional gel supports used in the manufacturing process of commercial factor IX preparations. This paper investigates the application of CIM® monolithic columns for the separation of vitronectin from factor IX and fast in-process control of factor IX [5].

Attachments

Full view

Production and down-stream processing in biotechnology requires fast and accurate control of each step in the process. Liquid chromatography of biopolymers on so-called soft supports is typically slow, often causing significant product degradation. One way of improving these boundary conditions in liquid chromatography is the use of monolithic adsorbents. The basis for fast separations with such media is a reduced mass transfer resistance owing to the fact that pore diffusion is practically non-existent. Chromatography with compact, porous units such as monolithic columns is being used increasingly for analytical and preparative separations of biopolymers with apparent molecular mass ranging from several thousand to up to several million.

This paper describes the use of a CIM® Convective Interaction Media for fast purification of plasmid DNA as well as for the concentration of viruses.

Plasmid DNAs are circular duplex DNA molecules that are maintained stable as episomal genetic information within bacteria. They play an important role in gene technology - they are used for applications such as transformation, sequencing, transfection studies, etc. These applications require satisfactory purity of used plasmid DNA. For purification of plasmid DNA from Escherichia coli, monolithic units as anion-exchangers (CIM® DEAE and QA disks) were used. Separation of RNA from DNA as well as concentration of plasmid DNA were performed on the same disks.

All the methods for concentration of viruses, in general, are expensive, time-consuming and they are frequently not very successful. Therefore an attempt to bind viruses on an anion exchanger (CIM® DEAE disk) and elute bound virions in small volume (concentration) was done. As a model virus, measles was chosen. Using CIM® DEAE disk concentration of the measles viruses was successfully performed in less than 10 minutes.

Attachments

Full view

1999

Found recently serine protease called, as tissue plasminogen activator (t-PA) is able to dissolve efficiently the blood clots. Thus this protein seems to be extremely useful in clinical practice in the cases of heart attack victims.

Real process of fibrinolysis in human blood system represents very complicated network of simultaneous biological events. It is clear that t-PA has a branched set of functional complements with their own, and probably different, affinity to this enzyme. It seems to be possible and quite interesting to investigate all these pairs separately creating them in vitro. At the same time, it is clear that the affinity chromatography approach could become as the most convenient way to create such biological pairs.

The recently developed High Performance Membrane (Monolith) Chromatography (HPMC) is quite promising in this regard, because of its high capacity and selectivity, combined with low backpressure and short operation times. Due to the inherent speed of the isolation it facilitates the recovery of a biologically active product, since the exposure to putative denaturing influences.

Attachments

Full view

CIM® supports are novel monolithic chromatographic supports. In contrast to conventional particle based chromatographic supports they consist of a single porous polymer. The pores form a highly interconnected network, which enables the flow of the mobile phase through the monolith. Molecules to be separated are transported to the surface by the convection. Since the diffusion is not a bottleneck any more, also the resolution and the dynamic capacity of the monolith are flow independent and an average analysis time is typically below one minute. Furthermore, CIM® columns were successfully applied for the purification of proteins directly from the fermentation broth.

Manganese peroxidases (MnP) and lignin peroxidases (LiP) are a family of glicosilated hemo-proteins, which are excreted into the growth medium during the idiophasic growth of the white rot fungus Phanerochaete chrysosporium. They are both involved in the lignin degradation. For their analysis and separation from the growth medium, HPLC is commonly applied. Besides the separation by Na-acetate concentration gradient (2), also the chromatofocusing can be used (3). A fast method for LiP isoenzyme separation from the growth medium of P. chrysosporium using CIM™ QA disk monolithic columns has been recently developed (1). A modified method was tested on the growth medium containing MnP isoenzymes.

Attachments

Full view

The aim of our work was to study the direct monitoring and purification of proteins from the fermentation broth using ion-exchange CIM® supports. Therefore, we studied the possibility of monitoring and purifying lignin peroxidase extracelular protein isoforms produced by the fungus Phanerochaete chrysosporium. These isoenzymes which also differ in their catalytic properties are able to partially depolymerize lignin and to oxidise several xenobiotics.

Attachments

Full view

The white rot fungus Phanerochaete chrysosporium under nitrogen or carbon limitation produces extracellular lignin peroxidases (LiP). They are able to partially depolymerize lignin and to oxidize several xenobiotics (DDT, PCB, PAH, etc.). By HPLC separation and isoelectric focusing multiple molecular forms of LiP have been isolated from the culture filtrate. For the isolation of LiP from the growth medium, mostly the HPLC technique with ion exchange Mono-Q or DEAE columns is used. The medium should be dialyzed before separation and usually also concentrated. Medium freezing is used to remove mucilaginous polysaccharides which disturb separation. The whole procedure is time consuming and information about isoenzyme content and their relative amounts in the growth medium is delayed for at least 1 day. HPLC separation itself lasts nearly an hour. For the separation of LiP isoenzymes from the culture filtrate, we used the monolithic stationary phase with weak (DEAE-diethylamine) and strong (QA-quaternary amine) ion exchange groups commercially available under trademark CIM (Convective Interaction Media). CIM supports are glycidyl methacrylate based monolithic porous polymer supports. As such they differ from conventional particle shaped chromatographic supports. The liquid is forced to flow through the support channels. Molecules to be separated are transported mainly by convection resulting in travelling times shorter for at least an order of magnitude. As a consequence the resolution as well as the binding capacity remain unaffected with the flow rate and a shorter analysis time can be achieved. This effect is even more pronounced in the case of large molecules such as proteins, which have a low diffusion coefficient. As such, CIM units can be advantageous also for lignin peroxidase isoenzymes separation and purification.

Attachments

Full view

Convective Interaction Technology (CIM®) offers a number of benefits for the purification of large molecules in comparison with conventional chromatography. The innovative matrix, cast as a single homogeneous piece, means that monolithic columns have a high pressure tolerance and allow fast operating flow rates.

Because the matrix structure is composed of large pores, mass transfer is essentially convective in contrast to conventional chromatography beads, where mass transfer is essentially diffusive. Therefore, CIM can be used at high flow rates without compromising binding capacity.

For these reasons, a monolithic column with anion exchange properties (CIM® QA) was selected to purify a very large protein (8 Mega Dalton) extracted from a marine mollusc.

Because 150 g of protein was required to perform preclinical trials, a scale-up of the process had to be designed and implemented. Early stage process development was carried out on an 8 mL column to determine the column loading capacity as well as the yield and the process reproducibility.

To improve binding on the column, stabilising agents had to be removed prior to this purification step. The protein had been observed to precipitate within hours of the removal of these reagents. Therefore, a suitable time frame for protein processing had to accommodate this instability.

Attachments

Full view

Isolation and purification of proteins, peptides and polynucleotides as well as fractionation of biological mixtures are of great importance both for the solution of theoretical problems in chemistry and biology and the
realization of practical plans connected, in particular, with the production of medicines on the basis of large biomolecules. An important problem in the production of biological substances for medicine is to work out the step of their isolation and fine purification, e.g. creation of high performance separation methods, particularly, the chromatographic techniques. Here, fast and efficient affinity separations based on dynamical interaction of biocomplements play very important role.

High Performance Membrane (Monolith) Chromatography (HPMC) allows to solve all problems of High Liquid Chromatography (HPLC) demonstrating a number of number of distinct advantages. A small thickness of separation layer and opened structure of throughput channels where the separation takes place cause minimum difussion resistance for normal mass transport of the substances as well as low working back pressure and thus, the possibility of use of high elution flow rates.

Attachments

Full view

In order to enable the detection of low abundance proteins from human plasma, it is necessary to remove high abundance proteins. Among them, human serum albumin and immonoglobulin G represent more than 75 % of all abundance proteins. There are many strategies developed for an efficient removal of these two main proteins, the majority of them rely on highly selective, yet expensive affinity techniques. In this work an affinity monolithic column was used for the depletion of IgG. For the removal of HSA we tested an alternative - complementary approach, where an ion-exchange mode was used as one of the depletion steps. the results were compared to the ones obtained by by using the prseudoaffinity columns.

Attachments

Full view

1998

White rot fungus Phanerochaete chrysosporium produces under nitrogen limitation extracellular lignin peroxidases (LiP). They are able to partially depolymerize lignin and to oxidise several xenobiotics (DDT, PCB, PAH,…) and synthetic dyes. Trough HPLC separation and isoelectric focusing multiple molecular forms of LiP have been determined and isolated from the culture filtrate. Depending on growth conditions, separation technique, strain employed and culture age 2-15 different LiP izoenzymes were observed in culture media of Phanerochaete chrysosporium. They are structurally similar but differ in stability, quantity and in catalytic properties. For the isolation of LiP from growth medium, mostly the procedure employing HPLC ionexchange columns as shown on Scheme 1 is used. For the separation of LiP isoenzymes from the culture filtrate, we used CIM (Convective Interaction Media) units. Their advantage is very fast separation of macromolecules due to their particular threedimensional structure. In contrast to particle supports containing closed pores, CIM units consist of monolith porous material containing flow through pores. Therefore, macromolecules to be separated are transported to the active site by convection rather than by diffusion. As a consequence, the separation resolution and dynamic binding capacity are flow independent. As such CIM units can be advantageous also for lignin peroxidase isoenzymes separation and purification.

Attachments

Full view