On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
1999

The aim of our work was to study the direct monitoring and purification of proteins from the fermentation broth using ion-exchange CIM® supports. Therefore, we studied the possibility of monitoring and purifying lignin peroxidase extracelular protein isoforms produced by the fungus Phanerochaete chrysosporium. These isoenzymes which also differ in their catalytic properties are able to partially depolymerize lignin and to oxidise several xenobiotics.

Attachments

Full view

The white rot fungus Phanerochaete chrysosporium under nitrogen or carbon limitation produces extracellular lignin peroxidases (LiP). They are able to partially depolymerize lignin and to oxidize several xenobiotics (DDT, PCB, PAH, etc.). By HPLC separation and isoelectric focusing multiple molecular forms of LiP have been isolated from the culture filtrate. For the isolation of LiP from the growth medium, mostly the HPLC technique with ion exchange Mono-Q or DEAE columns is used. The medium should be dialyzed before separation and usually also concentrated. Medium freezing is used to remove mucilaginous polysaccharides which disturb separation. The whole procedure is time consuming and information about isoenzyme content and their relative amounts in the growth medium is delayed for at least 1 day. HPLC separation itself lasts nearly an hour. For the separation of LiP isoenzymes from the culture filtrate, we used the monolithic stationary phase with weak (DEAE-diethylamine) and strong (QA-quaternary amine) ion exchange groups commercially available under trademark CIM (Convective Interaction Media). CIM supports are glycidyl methacrylate based monolithic porous polymer supports. As such they differ from conventional particle shaped chromatographic supports. The liquid is forced to flow through the support channels. Molecules to be separated are transported mainly by convection resulting in travelling times shorter for at least an order of magnitude. As a consequence the resolution as well as the binding capacity remain unaffected with the flow rate and a shorter analysis time can be achieved. This effect is even more pronounced in the case of large molecules such as proteins, which have a low diffusion coefficient. As such, CIM units can be advantageous also for lignin peroxidase isoenzymes separation and purification.

Attachments

Full view

Monolithic chromatographic supports can efficiently be used for fast separation and purification of different types of molecules, both in the analytical and preparative scale. CIM Convective Interaction Media™ monolithic columns are macroporous polymeric supports that allow in-seconds separation of proteins and other biomolecules in gradient and isocratic modes.

In this work, the results showing the main characteristics of CIM™ columns are presented. The breakthrough curves at different flow rates were measured and it is shown that the dynamic binding capacity is practically unaffected by increased flow rates. The adsorption isotherm is almost rectangular exhibiting a highly favourable conditions for binding the tested components to the matrix. Furthermore, relatively high binding capacity is still maintained at elevated ionic strengths of the binding buffer. Finally, the HETP values of the components with different molecular masses are presented.

Attachments

Full view

There are many different chromatographic supports on market. Although main part of them are particle shaped supports, the so-called monoliths are becoming increasingly more important. Particle based supports are commonly uniform-sized of some micron with high porosity. The pores are required to increase the specific surface area and, as a consequence, to increase the binding capacity. Since the pores are closed on one side, the liquid inside them is stagnant and the movement of molecules is governed by diffusion. Therefore, to obtain a good separation and a high binding capacity, low flow rates should commonly be applied. This results in flowdependent resolution of the separation and dynamic binding capacity.

In contrast to conventional porous particles the morphological characteristics of CIM supports are characterised by a single monolithic unit that contains pores, opened on both sides. These pores are highly interconnected forming a flow-through a network. All the mobile phase is forced to run through these open pores, therefore, the mass transfer between stationary and mobile phases is based on convective flow. One of the key features of monolithic units is their pore size distribution that should enable low back pressure at high throughputs together with high specific surface area, needed for high binding capacity.

In this work, dynamic characteristics of CIM disks bearing weak anion exchange groups for binding Bovine Serum Albumin (BSA) were studied. Reproducibility was checked and protein concentration as well as the flow rate were varied. Preliminary results confirm the flow independence of the dynamic binding capacity in the whole range of applied flow rates.

Attachments

Full view

CIM (Convective Interaction Media) represent a new generation of chromatographic supports. In contrast to conventional particle supports, where the void volume between individual porous particles is unavoidable, CIM supports consist of a single monolith with open channels. In this way, molecules to be separated are transported into the pores by convection, resulting in short separation times.

CIMsupports proved to be very efficient for extremely fast separations of proteins in ion exchange, hydrophobic interaction and affinity chromatography mode. Recently, the successful separation of DNA as well as some smaller molecules like e.g. peptides and oligonucleotides were also performed.

All the above mentioned separations were carried out on an analytical scale with the use of 0.34 mL CIM discs. The scale-up of monolithic units was limited mainly due to the problems associated to the mechanical stability, poor sample distribution and higher backpressures. The change from the axial to radial flow enables the design of the so-called 8 and 80mLCIM tubes. They were basically designed for very fast purification of macromolecules.

In this work we present some basic characteristics of these newly developed units in terms of separation and binding capacity. In addition, some practical examples will be given and discussed as well.

Attachments

Full view

1998

White rot fungus Phanerochaete chrysosporium produces under nitrogen limitation extracellular lignin peroxidases (LiP). They are able to partially depolymerize lignin and to oxidise several xenobiotics (DDT, PCB, PAH,…) and synthetic dyes. Trough HPLC separation and isoelectric focusing multiple molecular forms of LiP have been determined and isolated from the culture filtrate. Depending on growth conditions, separation technique, strain employed and culture age 2-15 different LiP izoenzymes were observed in culture media of Phanerochaete chrysosporium. They are structurally similar but differ in stability, quantity and in catalytic properties. For the isolation of LiP from growth medium, mostly the procedure employing HPLC ionexchange columns as shown on Scheme 1 is used. For the separation of LiP isoenzymes from the culture filtrate, we used CIM (Convective Interaction Media) units. Their advantage is very fast separation of macromolecules due to their particular threedimensional structure. In contrast to particle supports containing closed pores, CIM units consist of monolith porous material containing flow through pores. Therefore, macromolecules to be separated are transported to the active site by convection rather than by diffusion. As a consequence, the separation resolution and dynamic binding capacity are flow independent. As such CIM units can be advantageous also for lignin peroxidase isoenzymes separation and purification.

Attachments

Full view