On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2023

Extracellular vesicles (EVs) are a diverse group of particles secreted by all living cells. Numerous different therapeutic applications of both native and engineered EVs are currently in different stages of clinical development. Nevertheless, considerable challenges are still present in the manufacturing, purification and analytics of EVs. Many factors can influence the final product, therefore an all-inclusive approach to development of the bioprocess is needed. Cell culture parameters and production platform selection might alter the number and composition of EVs. Furthermore, raw materials used in upstream production, such as media and supplements, can greatly impact the chromatographic purification. In this study, we evaluated EV production in different HEK293-derived cell lines. Separation on a strong anion exchange column CIMmultus®-EV was used to assess the abundance of different EV populations. Multi-detector PATfix® SEC analytics coupled with antibody labeling was then used to analyze chromatographic fractions. Furthermore, the analytical methods and performance in downstream processing were applied in the optimization of the upstream process.

Attachments

Full view

Cells release extracellular vesicles (EVs) of different sizes and intracellular origin. Due to their heterogenicity, the isolation of the target EV population from a mixture of supernatant-derived particles can be challenging. Anion exchange chromatography (AEX) exploits the negative charge on EV surface molecules for binding to the positively charged solid phase. CIMmultus® EV, an AEX chromatography monolith column, can separate EVs in subpopulations based on charge and offers insight into the heterogenicity of particles. Besides the availability of preparative tools for separation, combining multiple orthogonal and complementary characterization tools is crucial for defining the EV product of interest. In this work, we used a multiple-detector PATfix® system for the analysis of CIMmultus EV-fractionated samples. Samples were analyzed for the presence of EV-related tetraspanins using the fluorescence detector. PATfix MALS 3609 detector was used for the analysis of particle-containing samples and calculation of particle sizes.

Attachments

Full view

2022

Endotoxins are robust and persistent impurity, which are native to majority of phage substrates. Two anion exchangers, CIMmultus PrimaS and H-Bond, were tested for their capacity for endotoxin removal in comparison to well known strong anion exchanger, CIMmultus QA. 

Attachments

Full view

Extracellular vesicles (EV) are lipid bound products secreted by cells. Among them, exosomes have great potential for clinical applications. Animal and human-derived components used in cell culture, such as fetal bovine serum (FBS), naturally contain exosomes that can cross-contaminate the desired product. In order to study exosomes derived from cells of interest, multiple producers have come up with exosome-depleted FBS (EV (-) FBS) generated using different approaches. In this work we evaluated commercially available EV (-) FBS supplements for residual exosome content and tested their performance in upstream exosome production process. The analysis was performed with PATfix high pressure liquid chromatography system using PATfix size exclusion (SEC) analytical method.

Attachments

Full view

2020

Removal of host cell DNA is essential for all human-injectable biologics. This poster shows a method for achieving low host cell levels in preparations of exosomes. Purified exosome samples were prepared with anion exchange chromatography (AEC) and pre-treated with tangetial flow filtration (TFF) and nuclease treatment. Results are compared with an experimental control using TFF and size exclusion chromatohraphy (SEC).

The steps in purification process are illustrated by analytical size exclusion chromatography (SEC) on PATfix system with in-line UV, MALS and fluorescence detectors and by staining with Picogreen reagent. This technique visualizes sample composition by size, UV, light scattering and fluorescent properties.

Attachments

Full view

2019

Exosomes fulfill a critical role as communicators among cells, with targeting and message content depending on their surface receptors and payload. This makes them obvious candidates for an extensive range of diagnostic, therapeutic applications and a need for a fast, robust and scalable purification procedure.

CIMmultus™ monolithic columns are designed to meet the special fractionation needs of very large biologics like exosomes.

We show examples of exosome purification from cell culture with CORNERSTONE Exosome Process Development Pack and analysis of exosomal vesicle populations by Image stream flow cytometry.

Attachments

Full view

This poster shows how Multi-Angle Light Scattering detector and Fluorescence detector couppled to PATfix analytical system can be used to track extracellular vesicles through purification process. Samples were analyzed by analytical size exclusion chromatography (SEC). On SEC cell culture components diffuze into pores of chromatographic media and are separated (mostly) based on size. Particles larger than the media pore size are excluded in the void peak. This peak represents extracellular vesicles including apoptosomes, microvesicles and exosomes as well as cell debris and aggregates.

Attachments

Full view

One of the handicaps of working with bacteriophages is the long duration required to perform plaque assays. Plaque assays also impose questions about accuracy and precision relative to the scale and experience of the persons performing and interpreting them. This poster presents a pair of high precision, high accuracy chromatography-based assays that permit determination of phage concentration in less than 1 hour. Sensitivity of UV absorbance is poor because of the low concentration of phages. However, phage sensitivity is strongly amplified by monitoring the chromatogram with either fluorescence or MALS. Fluorescence works by measuring the fluorescence emission from tryptophan residues of the phage proteins. MALS works by passing a laser beam through the sample and reading the scatter produced when it encounters a particle. Larger species generate more scatter.

Attachments

Full view

Bacteriophages represent immense potential as therapeutic agents. Many of the most compelling applications of bacteriophages involve human therapy, some pertinent to gene therapy, others involving antibiotic replacement. In bacteriophage research and therapy, most applications ask for highly purified phage suspensions, as such it is crucial to reduce proteins, endotoxins, DNA and other contaminants. The most common technique for purification is ultracentrifugation using cesium chloride gradients. This technique is elaborate, cumbersome, expensive and difficult to scale-up.
Alternative techniques for purification are usually time consuming and affect phage recovery and/or viability. In this study we present efficient two-step chromatographic purification method with binding phages to a stationary phase - Convective Interaction Media (CIM®) monoliths. The aim of the study was to develop robust, fast and effective virus purification platform that can be used for several types of bacteriophages for any application. In this work bacterial lysate with bacteriophage T4 (host E.Coli) was used.

Attachments

Full view

2018

Immunoaffinity columns using antibodies as ligands against mammalian proteins could be used for different applications in protein expression control and, if a standard available, for direct protein quantification in complex sample solutions. Additionally, these columns are ideal for polishing step of recombinant proteins, such as mammalian receptor Fc fusion proteins. Most importantly, such columns could extract a significant amount of a single membrane protein from native source, suitable for downstream analyses, such as mass spec analysis of their glycans. Immunoaffinity chromatographic monoliths against RAE-1 GPI anchored glycoprotein were developed (CIMmic HDZ - @RAE-1 column) as a part of Glycomet project with the main goal to analyze the antigen glycoprofile.

Attachments

Full view

Hydrazide-activated (HDZ) columns were proven to be a product of choice for making the most effective immunoaffinity columns. They take advantage of a special hydrazide linkage that binds antibodies through the carbohydrate residues on their Fc regions. This leaves the antigen-binding domains fully accessible to enable the most effective capture of desired target (Figure bellow).
CIMac™ HDZ monoliths make HDZ-immobilized antibody columns even more effective. Because of their large channel size and the efficiency of convective mass transport, they eliminate the long loading residence times that are required for affinity chromatography on porous particle columns. Flow rates of 5–10 column volumes per minute allow complete purifications in a few minutes, even when the source material contains a low concentration of antigen. The same performance is achieved whether a small peptide or a large bio-assemblage like a virus particle or extracellular vesicle is isolated. The combination of HDZ monoliths and the immobilization protocol offers a strong tool for fast antigen isolation from complex biological sample (plasma, lysate, etc.) and consequently sensitive antigen quantification. An example of CIMac™ HDZ application is a purification of fibrinogen from human plasma.

Attachments

Full view

2016

The upstream and downstream monoclonal antibody (mAb) bioprocessing makes them susceptible to physical and chemical modifications. In the biotechnological production process of mAbs, structural variations may arise due to some enzymatic activity. Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity and cation-exchange chromatography (CEX) is one of the typical approaches for mAb charge variant analyses. We tested several CEX columns under different conditions and the best column for isotype separation was weak cation-exchanging CIMac COOH chromatographic monolith in pH gradient. We have proven a flow independent separation of mAb charge variants and in this way, a resolution comparable to classical CEX particulate-based analytical columns was achieved in only 6 min analysis time.

Attachments

Full view

2015

CIMac™ r-Protein A Analytical Column is short bed, high performance monolithic column . Primarly is intended for fast, efficient, and reproducible qualitative and quantitative analyses of Immunoglobulin G (IgG). It is suitable for use with HPLC and UPLC systems. Quantification of Immunoglobulin G is possible between 0.2 μg and 20 μg. Its small volume and short column length allow operation at high volumetric flow rates ( up to 3mL/min). The information about product quantity and purity is thus generated in just 1 minute! The column has innovative symmetric design for bi-directional flow, also extending column lifetime.

Attachments

Full view

2014

Biological samples often consist of a main component, such as albumin in serum, and many other constituents, present in smaller quantities, but nevertheless of high importance in biological systems. When detection of the low-abundance molecules is needed, the main component could interfere with the analyte, complicating the analysis or even making it impossible. In such cases a possible approach is to remove the interfering main component from the sample before the analysis.

Monolithic columns (CIM®) are a great foundation to build affinity chromatography methods, as they offer fast flow rates and can be modified to accomodate various ligands. We selected two most promising approaches for oriented binding of antibodies to the monolithic support. One approach was to bind antibodies to a protein A (pA) column with consequent crosslinking of the protein complex. The other approach was to chemically activate antibodies and bind them selectively to hydrazide-modified (HDZ) monolith surface.

Attachments

Full view

Exosomes are nano-sized vesicles that are released by many different cell types. They are involved in the transport of a wide range of signalling molecules, including mRNA, microRNA and proteins. Exosomes have been found into body fluids and multiple roles have been ascribed to exosomes, in particular in cell signalling where it has been demonstrated their correlation to disease progression and their overexpression as specific tumour cell biomarkers, suggesting their important role in their diagnosis.

This initial screening oriented towards the separation of exosomes from a cell culture supernatant, has been developed by BIA Separations in collaboration with Exosomics Siena. Exosomes used for this study were cultivated in two different cell lines, MeWo and LNCap, and, after the harvesting, a relatively pure target molecule was obtained after several centrifugations, filtrations and batch affinity capture step with a commercial purification kit. In order to speed-up the process and bring current DSP on a higher level, a novel purification approach based on chromatography, using CIM® monolithic columns was investigated. Monolithic supports represent a new generation of chromatographic media. Due to their large inner channel diameters and enhanced mass transfer characteristics, methacrylate monoliths offer efficient and fast separation of large biomolecules like vescicles, pDNA, viruses and monoclonal antibodies. High binding capacity, good product recovery and resolution are also benefits of monoliths. Different samples, (Standard batch purified exosomes, Culture supernatant filtered, Culture supernatant non-filtered), derived from MeWo and LNCap culture media,, were screened. QA, SO3, DEAE and OH CIM 1mL tube - 6μm pore size were screened. CIM® QA - 6μm pores was chosen.

Attachments

Full view

Interactions between antibodies and their antigens are highly selective and therefore immensely popular for affinity chromatography. Consequently, numereous antibody immobilizations were performed on monolithic supports via different activation chemistries in the last decade. Despite the work already done there was no systematic study, where as many as possible activation chemistries were tested for the immobilization of a model monoclonal antibody with subsequent chromatographic characterization of the affinity support. In this work, various preactivated CIM monolithic columns were used for the immobilization of a model monoclonal IgG.

Attachments

Full view

Monolithic ion exchange CIM® (Convective Interaction Media) columns have been proven in quantitative analysis of different immunoglobulins such as IgM and IgG from human plasma or cell supernatants. The separation mechanism is based on ionic interactions between the ion exchange monolith and immunoglobulin that are controlled by salt concentration. Here we present another possibility of IgM determination based on monolithic CIM® OH columns where the interactions may be controlled by changes in salt concentration or by pH increase. A method for quantitative HPLC determination of IgM in cell supernatant with fluorimetric detection was developed on CIM® OH column (0.34 mL) by means of pH increase. Optimal separation of IgM from cell supernatant matrix was achieved by combining acetate and phosphate buffer in a suitable gradient profile. Two different quantification methods, i.e. calibration curve and standard addition.

Attachments

Full view

Enrichment of phosphopeptides prior to LC-MS analysis is a crucial sample preparation step because of their low stoichiometry in biological sample, longer retention on reversed phase columns, and lower ionization efficiency compared to non-phosphorylated peptides [1].The use of metal oxides, most prominently of TiO2 enabled efficient and relatively simple phosphopeptide-enrichment. In this study a new monolithic column from BIA Separations containing immobilized TiO2-nanoparticles was tested for its ability to enrich phosphopeptides. The TiO2-column was also tested for possible carryover originating from biological samples. In conclusion, tested monolithic TiO2 columns show significant binding ability for phosphopeptides and are considered as suitable for phosphopeptide enrichment.

Attachments

Full view

The demand for human immunoglobulin is invariably increasing on an annual basis. To satisfy demands, different manufacturing processes are used to isolate immunoglobulins from human plasma. A quest for alternative paths in manufacturing not only requires development of the most economical manufacturing process, but also a rapid method development and development of reliable analytics for manufacturing monitoring. For an efficient improvement of the purification methods as well as for in-process control during manufacturing stage, the usage of reliable and fast analytical techniques are of crucial importance.

Fast and reliable fingerprint-based method for characterization of immunoglobulin G (IgG) prepared from Cohn I+II+III paste in two chromatographic steps is presented. The fingerprint method bases on partial separation of proteins in linear gradient on CIMac QA 0.1 mL column. Partial separation of proteins does not allow simple quantitative analysis of the samples during the IgG production from Cohn I + II + III paste, however, a very accurate qualitative information about the composition of the sample can be obtained in less than 5 minutes.

Attachments

Full view

In recent years bacteriophages were identified as a useful potential tool for different applications such as alternative to antibiotics, detection of pathogenic bacteria, delivery vehicles for protein and DNA vaccines and as gene therapy delivery vehicles. For all listed fields of use it is important that phages are highly purified with preserved biological activity. Phage and other virus purification have traditionally been carried out by CsCl2 density gradient ultracentrifugation, which is however difficult to be scaled-up. An alternative is chromatography, which already proved to be efficient for separation and purification of certain virus types. Methacrylate monoliths (CIM Convective Interaction Media® monolithic columns) were designed for purification of bionanoparticles and they already proved to be very efficient for concentration and purification of several plant and human viruses (influenza A, influenza B, adenovirus type 5, hepatitis A and others).

Our aim was to investigate whether CIM methacrylate monolithic columns can be implemented for purification of phages. Staphylococcus aureus phage VDX-10 was selected. Chromatographic support chemistry and buffer screening led to development of purification method on strong anion exchanger. Optimised single step purification method developed for S. aureus VDX-10 phage on CIM® QA monolithic column resulted in efficient removal of host cell DNA and proteins with high recovery of viable phage.

Attachments

Full view