On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2008

During last decades different methods for purification of influenza viruses have been described. Most of these methods were developed for purification of egg derived influenza virus which is still the main production system for influenza vaccine viruses. Since cell culture based technology is gaining more and more importance, the need for alternative, efficient and scaleable purification methods has risen. Chromatography is becoming a method of choice for purification of viruses. Relevance of this technique was recently demonstrated also for influenza viruses. Methacrylate monoliths are characterized by large channel diameter, high surface accessibility and convective mass transport. As a consequence they have high binding capacity for large molecules, enable high flow rates at low pressure drop and therefore increase productivity. Recently it has been proven that methacrylate monolithic columns can also be used for purification and concentration of different viruses.

It was the purpose of this work to explore possibilities for purification of influenza viruses on ion exchange methacrylate monoliths. Different subtypes of influenza A and influenza B virus were tested employing various ion exhange monolithic columns.

Attachments

Full view

During the last decade important developments in molecular medicine and adenoviral vector design have been achieved, leading to an increased use of adenoviral vectors in clinical gene therapy protocols. One of the main advantages of the adenovirus is their ability to replicate at high titres in permisive cell lines. The availability of large quantities of adenoviral vector preparations is recognized as an important limitation to pre-clinical and clinical studies. Consequently there is a global focus on large scale production of adenoviral vectors, providing high titres combined with fast, effective and reliable purification methods.

Attachments

Full view

2007

Membrane based anion exchangers are being used increasingly for purification of monoclonal antibodies. The transition from particle-based anion exchangers is driven partly by the convenience of membranes and partly by the cost saving associated with their disposability, however the feature that makes them functionally superior is more effective mass transport.

Attachments

Full view

2006

Gene therapy has already shown some great results in treatment and cure of some monogene diseases, such as diabetes. While the use of genetically modified viruses raises safety concerns, synthetic formulations of genes inserted in plasmids are regarded as safer. At present, most clinical trials involve plasmids smaller than 10 kb. However, the concern that regulation of the functioning of the gene is ensured together with the expectation of the progression of gene therapy to multigene disfunctions, like cancer or complex nevrodegenerative disfunctions (Alzheimer disease), will require the production of larger plasmids [1].

Attachments

Full view

Commercially available CIM® disk monolithic columns are intended for very fast analyzes and laboratory purification. Their shape is a compromise to achieve acceptable resolution and binding capacity what make them suitable for wide range of laboratory applications. Separations of complex protein mixtures can be carried out within just a few seconds because of flow unaffected resolution and, on the other hand, purification can be effectuated with high productivity due to flow-unaffected dynamic binding capacity [1]. However, in many cases in the field of molecular biology, only a limited amount of sample is available. In such a case it is beneficial to work with small columns having high resolution or they can be used as affinity columns or bioreactors saving significant amount of valuable ligand. Having this goal in mind we developed CIM® disks with the volume of 1/10th and 1/100th of original volume. In comparison to conventional CIM® disks, they exhibit higher resolution and lower limit of detection, therefore smaller concentrations of target macromolecules can be detected. The separation ability and the protein capacity were tested on anion and cation exchange 3.4 mL and 34m L mini disk monolithic columns.

Attachments

Full view

Analysis of a large numbers of samples requires chromatographic supports that not only enable fast separation and purification of a target biomolecules from a complex matrix but are also involved in an automation process. The 96 – microtiter plate format enables both. Although they are routinely used for decade's only recently few reports about the microtiter plates bearing monoliths as a separation media, were reported [1]. Because of advantageous properties such as flow unaffected dynamic binding capacity and resolution 96 - microtiter plates with methacrylate based monolith were prepared. Characterisation of such plate demonstrated that uniform flow rate can be achieved through all wells and no leakage is present. Efficient separation of proteins was achieved within minute. Furthermore CLC (Conjoined Liquid Chromatography) concept [2] originally derived for analytical columns on CIM disk, can easily be extrapolated to microtiter plates. We demonstrated that multidimensional chromatography with 96 – well plate is feasible and can further accelerate screening processes.

Attachments

Full view

2005

The analysis of molecular interactions is a key part of the drug discovery process, and analytical techniques are available for studying in vitro the ligand/target complex since the early stage of the drug development process.

With regard to the assessment of the activity of chemical libraries, the affinity chromatography on HPLC immobilized-enzyme column (or immobilized enzyme reactors, IMER) is one of most promising methodologies for HTS applications.

Human recombinant acetylcholinesterase (hAChE) represents a well-known target for drug-discovery in Alzheimer’s Disease.

Attachments

Full view

The rapidly growing interest in the area of proteomics induces intensive efforts to find robust, automated and sensitive high-throughput analytical tools. In this context, the concept of solid-phase digestion (ex. trypsin immobilization on a solid support[1]) has received great attention in the last years. Trypsin (EC 3.4.21.4) has been covalently immobilized on different monolithic supports and resulting bioreactors used as immobilized enzyme reactors (IMERs) for on-line digestion, peptide separation and peptide mapping. Bioreactors efficiencies were evaluated with different recombinant proteins after on-line digestion. The technique used for the separation and identification of peptides was high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS).

Attachments

Full view

Plasmids are excellent genetic vectors and have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years, plasmids are intensively investigated for gene therapy purposes and genetic vaccination. In this case, plasmid DNA (pDNA) of high purity is required. To follow such demands, several chromatographic steps are commonly needed. In the case of buffer compatibility, columns can be connected in-line to overcome time consuming and yield lowering multiple chromatographic steps. Since each of the unit operations contributes to the dispersion, the resolution is further decreased by each chromatographic step. This drawback might be surmounted by combining several chromatography steps into a single chromatography column. This approach is known as multidimensional or conjoint liquid chromatography (CLC).

Attachments

Full view

Viruses have proven to be useful vectors for gene therapy purposes. As therapeutics for human use they must be pure and contaminant free. Traditionally, viruses are purified by complicated and time consuming methods such as CsCl density gradient centrifugation or similar. In recent years liquid chromatography has became interesting method for virus purification. It provides high level of purity required for human use and increases productivity. Traditional chromatographic supports were mostly designed for purification of proteins and as such are commonly inappropriate for viruses. Alternative to traditional chromatographic support are methacrylate monoliths (CIM monoliths), characterized by large channel diameter, high surface accessibility and convective mass transport.

The aim of this work was to characterize CIM supports for separation and possible purification of a model virus Tomato mosaic virus (ToMV) from crude plant material.

Attachments

Full view

Affinity chromatography is a key method for protein purification. Its main advantage is in the high specificity which enables purification of a single protein from complex biological mixtures. For practical use the specific ligand should be immobilised on insoluble matrix. As a matrix, standard chromatographic supports are commonly used. They are normally in form of small (some m in diameter) particles containing pores to provide high specific surface resulting in high binding capacity. The pores are normally closed on one side, thus the liquid inside them is stagnant and the molecules are transported to the active site by diffusion. Since the diffusion coefficients for macromolecules, such as proteins, are very low, diffusion determines the overall process dynamics. As a consequence, separation or purification of the proteins takes normally 0.5 to 1h even on analytical scale.

Attachments

Full view

2004

By using a combination of two CIM® tube monolithic columns, OH and DEAE chemistry, we were able to successfully purify plasmid DNA from bacterial culture without using RNase. Purified plasmid DNA is very pure, since common contaminants, such as proteins, genomic DNA, endotoxins and RNA were under the detection limit. The scale up units produced according to cGMP standard are already used for the purification of plasmid DNA for gene therapy purposes on industrial scale.

Attachments

Full view

Traditionally, viruses are purified by time consuming methods such as CsCl density gradient centrifugation or similar. These methods are often inefficient and limited to small scale. In recent years different methods for virus purification, based on ion exchange, gel filtration and affinity chromatography have became popular. Recently, CIM® disk monolithic columns were used for successful concentration of two plant viruses (1) and for improved detection of two human viruses (2). Cucumber mosaic virus (CMV) and Tomato mosaic virus (ToMV) were concentrated and subsequently detected from extremely diluted samples in which they were initially undetectable. Successful concentrations of both viruses encourage us to explore the possibilities of CIM® supports for virus purification. As a model virus ToMV was selected. ToMV is a rod shaped plant virus with a typical size of 300 x 18 nm and isoelectric point at pH 4.6.

Attachments

Full view

Tissue plasminogen activator (t-PA) is serine protease which converts plasminogen into plas-min dissolving the major component of blood clots, fibrin. So, it can be extremely useful in clinical practice to help curing of heart attack victims. The most available way protein producing is genetic engineering where separation and purification of goal protein are one of the important steps in protein producing process.

Recently developed High performance monolithic disk chromatography, HPMDC, seems to be a very attractive way for study quantitative affinity parameters of recombinant proteins with different ligands as well as for protein separations and purifications. High process speed prevents the denatura-tion due to temperature and solvents influence. The better mass transfer mechanism (convection rather than diffusion) allows to consider only the biospecific reaction as time limiting.

It is known that plasminogen, which is the natural substratum for t-PA, can be successfully used as affinity ligand to separate t-PA from cellular media. However, the use of synthetic ligands for affinity chromatography is more preferable due to their higher stability and lower total cost.

Attachments

Full view

2003

The only four drugs approved for the clinical treatment of Alzheirner’s Disease (tacrine. rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors which act by maintaining high levels of acetylcholine at the muscarinic and nicotinic receptors in the central nervous system. Human acetylcholinesterase (HuAChE) represents a widely studied target enzyme and it is still object of research for the development of new drugs as enzyme inhibitors.

In a previous paper we reported the immobilisation of AChE on a silica based chromatographic column (50 x 4.6 mm 1.0.) The yeld of immobilization and the stability of the AChE-IMER were considered satisfactory, but some problems arose. The length of the IMER and the large amount of enzyme covalently bound to the chromatographic support resulted in catalysis product long elution times and some inhibitors aspecific matrix absorption with delayed enzyme activity recovery. In order to avoid these complications and considering the high rate of AChE enzymatic reaction. we decided to reduce the dimension of the solid support for immobilization, hence the amount of immobilized enzyme, by selecting a monolithic matrix disk (12 x 3 mm I.D.).

CIM® (Convective Interaction Media) monolithic supports (Biaseparations. Lubiana) represent a novel generation of stationary phases used for liquid chromatography, bioconversions, and solid phase synthesis. As opposed to individual particles packed into chromatographic columns, CIM® supports are cast as continuous homogeneous phases and provide high rates of mass transfer at lower back pressure.

In the present work a CIMK disk with immobilised human recombinant acetylcholinesterase (HuAChE-ClM® Disk) was developed. The activity of immohilised enzyme, the long term stability and reproducibility were tested. HuAChE-CIM® disk was applied as an immobilised enzyme micro-reactor (micro-IMER) in on-line HPLC system for inhibitory potency determination of known AChE inhibitors.

Full view

Plasmids are episomes that have been recognized in few eukaryotic and most prokaryotic species. Some plasmids are excellent genetic vectors and they have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years plasmids were intensively used for gene therapy purposes (1). Most often purification starts with the cells harvest followed by alkaline lysis step in which ribonuclease A (RNase) is typically used. After that, plasmid DNA can be precipitated and used directly or can be further purified by different methods (2). Currently, several chromatographic methods, such as ion-exchange, size exclusion, affinity, and hydrophobic chromatography, have been demonstrated in plasmid purification (3). Until now a limited number of small scale purification methods without use of RNase were published. Convective Interaction Media CIM® is a monolithic chromatographic support for which has been shown that is very efficient for the separation of large molecules, such as proteins, DNA and viruses (4).

Attachments

Full view

Traces of DNA in RNA samples represent impurities that could affect results of mRNA quantification and cDNA synthesis. In most cases, the DNA impurities in RNA samples are removed using enzyme deoxyribonuclease (DNase), which specifically breaks down DNA. In order to avoid the addition of DNase into the analyzing sample, the use of immobilized DNase on solid support is recommended. Because of the DNA size, very few supports available on the market enable efficient interaction between immobilized enzyme and DNA.

In recent years a new group of supports named monoliths was introduced. Because of enhanced exchange between mobile and stationary phase separation and bioconversion processes are significantly accelerated. Therefore also the efficiency of DNA removal using immobilised enzyme might be competitive to the degradation with free enzyme.

Attachments

Full view

Plasmids are episomes that have been recognized in few eukaryotic and most prokaryotic species. Some plasmids are excellent genetic vectors and they have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years plasmids were intensively used for gene therapy purposes (1).Most often purification starts with the cells harvest followed by alkaline lysis step in which ribonucleaseA (RNase) is typically used. After that plasmid DNA can be precipitated and used directly or can be further purified by different methods (2).Currently, several chromatographic methods, such as ion-exchange, size exclusion, affinity, and hydrophobic chromatography, have been demonstrated in plasmid purification (3). Until now a limited number of small scale purification methods without use of RNase were published. Convective Interaction Media CIM®is a monolithic chromatographic support for which has been shown that is very efficient for the separation of large molecules, such as proteins, DNA and viruses (4).

Attachments

Full view

The only four drugs approved for the clinical treatment of Alzheimer’s Disease (tacrine, rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors which act by maintaining high levels of acetylcholine at the muscarinic and nicotinic receptors in the central nervous system. Human acetyicholinesterase (HuAChE) represents a widely studied target enzyme and it is still object of research for the development of new drugs as enzyme inhibitors.

In a previous paper il] we reported the immobilisation of AChE on a silica based chromatographic column (50 x 4.6 mm I.D.) The yield of immobilization and the stability of the AChE—IMEN were considered satisfactory, hut some problems arose. The length of the IMER and the large amount of enzyme covalently bound to the chromatographic support resulted in catalysis product long elution times and some inhibitors aspecific matrix absorption with delayed enzyme activity recovery. In order to avoid these complications and considering the high rate of AChE enzymatic reaction, we decided to reduce the dimension of the solid support for immobilization, hence the amount of immobilized enzyme, by selecting a monolithic matrix disk (12 x 3 min I.D.).

CIMa (Convective Interaction Media) monolithic supports (Bia Separations, Ljubljana) represent a novel generation of stationary phases used for liquid chromatography, bioconversions, and solid phase synthesis. As opposed to individual particles packed into chromatographic columns, CIM supports are cast as continuous homogeneous phases and provide high rates of mass transfer at lower back pressure.

In the present work a CIM® disk with immobilised human recombinant acetylcholinesterase (HuAChECIM€ Disk) was developed. The activity of immobilised enzyme, the long term stability and reproducibility were tested. HuAChECIM disk was applied as an immobilised enzyme micro-reactor (micro-IMER) in on-line HPLC system for inhibitory potency determination of known AChE inhibitors.

Attachments

Full view

2002

The progress in gene-therapy and DNA vaccination leads to a growing demand of therapeutic applicable plasmid DNA (pDNA). To guarantee the supply for the clinical trials and finally for the market new pDNA production processes, which meet all regulatory requirements, have to be developed. Conventional small scale techniques can not easily be transferred to the manufacturing scale (technical reasons and safety considerations). We developed a generic large scale process for highly purified plasmids “free” of bacterial contaminants which works without enzymes, detergents (except SDS during the cell lysis) and organic solvents.

Attachments

Full view