On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2022

Adenovirus is well-know gene therapy tool that gained attention as a promising vaccine delivery vehicle, specially during Covid-19 pandemics, where it was used to deliver sequence for protein S (S). Multiple serotypes have been tested in clinical trials for various applications, the most common one being human adenovirus serotype 5 (Ad5). With this in mind, we chose Ad5-S construct with GFP tag as a model vector to develop upstream process (USP) and supporting analytical tools.

Attachments

Full view

Recombinant adeno-associated viral (rAAV) vectors are the leading gene delivery tool for treatment of a variety of diseases. While several rAAV mediated therapies have been approved so far, and many more are in clinical trials, rAAV production still faces many challenges. Key goal of rAAV upstream process development is achievieng high viral titer together with a sufficient percentage of full capsids. Moreover, analysis of complex upstream harvest samples can be challenging. Classical analytical methods such as ddPCR/ELISA offer limited information due to differences in sample preparation and basic principles for detecting empty and full capsids. Method is also time consuming and therefore less useful for following rAAV production process in real time. To overcome these limitations, we developed a PATfix Valve Switch analytical method that is based on ion exchange high pressure liquid chromatography (IEX-HPLC) and can be successfully applied for analysis of empty/full ratios in crude upstream samples.

Attachments

Full view

Extracellular vesicles (EV) are lipid bound products secreted by cells. Among them, exosomes have great potential for clinical applications. Animal and human-derived components used in cell culture, such as fetal bovine serum (FBS), naturally contain exosomes that can cross-contaminate the desired product. In order to study exosomes derived from cells of interest, multiple producers have come up with exosome-depleted FBS (EV (-) FBS) generated using different approaches. In this work we evaluated commercially available EV (-) FBS supplements for residual exosome content and tested their performance in upstream exosome production process. The analysis was performed with PATfix high pressure liquid chromatography (HPLC) system using PATfix size exclusion (SEC) analytical method.

Attachments

Full view

2021

The IVT reaction is one of the most expensive steps in mRNA production process and its optimization to reach high mRNA yield is of key importance Standard mRNA quantification techniques like absorbance and fluorescence based assays are time consuming and cannot be performed at line as the IVT reaction progresses In addition, other reaction components like nucleotides and pDNA interfere in the analytical results and reduce the method’s accuracy A new approach shown here uses CIMac PrimaS™ analytical HPLC column to separate and quantify several key IVT components with a very short run time, enabling fast “at line” tracking

Attachments

Full view

Density gradient ultracentrifugation (DGUC) is a well established tool for Empty/ Full AAV capsid separation based on density differences between AVV sub-populations. However DGUC practice is laborious and lacks any detection options, therefore fractions must be collected manually and analyzed later. Both of these shortcomings can be addressed by coupling post DGUC workflow to PATfix analytical HPLC. BIA Separations PATfix platform
provides sufficient tools for liquid extraction and fractionation as well as a comprehensive detector suite for precise fraction characterization. Baseline separation of capsid species was achieved in a density gradient of CsCl, producing a centrifugram that reveals information traditional DGUC and anion exchange chromatography cannot.

Attachments

Full view

Optimizing processing steps in sc pDNA isolation is critical for obtaining good process yields as well as high product purity. HPLC with convective chromatography media (e.g. monolith) offers a rapid analytical method to characterize complex biomolecular mixtures and gives immediate feedback during process development. E coli lysis represents such a challenging step, where multiple critical quality attributes need to be identified and critical processing parameters optimized. This approach leads to better yields and product purity, allowing for simplified downstream steps. A new PATfix analytical HPLC platform presented here uses CIMac pDNA column, to separate and characterize plasmid from impurities, allowing for easy optimization of key parameters such as RNA removal.

Attachments

Full view

2020

HPLC with convective chromatography media (e.g.monolith) offers a rapid analytical method to characterise complex mixtures. Transcription reaction used for production of mRNA represents such a mixture, with components varying in size, chemical and physical properties. A new analytical HPLC approach (PATfix) presented here uses CIMacPrimaS to separate IVT components such as triphosphate-nucleotides (NTPs), enzymes, DNA template and RNA in a very short gradient.

Attachments

Full view

2019

AAV vector lots are generally a heterogeneous mixture of empty particles (i e do not contain DNA) and full particles (i.e. contain DNA). Different spectrometric based methods can be used to establish the ratio between full and empty AAV particles, but accurate evaluation of empty/full ratio is often obstructed due to complex spectroscopic behavior of empty and full AAV particles, such as poor separation and impurity overlapping. An approach that takes difference in physical chemical properties between empty and full capsids into account overcomes limitations of spectrometric based evaluation of empty and full AAV particle ratio.

Chromatographic separation of empty and full AAV 2 8 capsids was achieved on the CIMac AAV full/empty analytical column (strong anion exchanger, QA quaternary amine chemistry) with the PATfix TM HPLC system using a linear NaCl gradient at pH 9.0 Signal response from three different detectors connected in series was analyzed fluorescence (excitation 280 nm emission 348 nm), light scattering 90 angle, LS) and UV absorbance 260 nm and 280 nm).

Attachments

Full view

2017

Production of high value biological therapeutics usually involves complex manufacturing processes with high process variability. Additionally, development of robust and reliable bioprocesses can be challenging. PAT aims to enhance bioprocess understanding and implies a holistic approach to ensure that quality is built into products by design. Efficient PAT therefore calls for fast and robust analytical techniques which enables to asses high quality information about critical quality attributes and key performance indicators as parallel as possible to the manufacturing process. PATfinder™ is unique HPLC system for routine gradient separations that enables every analytical task. Equipped with bio-inert ceramic pump heads is deliberately tailored to meet the demands of analytical applications covering wide range of biomolecules. Highly sensitive and fast multi-wavelength detector enables to detect component peaks even in very fast gradients.

Attachments

Full view

2016

Productivity of the downstream bioprocessing depends among others on the efficiency of chromatographic step. One of the crucial chromatographic parameters is dynamic binding capacity (DBC) for certain biomolecule. DBC could be tailored with changing the surface area of convective pores by tailoring the surface of pre-polymerized monoliths using graft or block polymerization of polymer brushes. Grafted CIM monoliths have already been prepared via Radical Polymerization (RP) and successfully characterized (1).

Recently, the implementation and optimization of Controlled Radical Polymerization (CRP) for grafting of large pore monoliths (average diameter 6 μm ) resulted in polymethacrylate-based ionic exchanger with at least 5 times higher DBC compared to non-grafted 6 μm monoliths, while preserving high permeability. The main goal of our study was to chromatographically characterize novel grafted ion-exchanging monoliths (CIM gDEAE and CIM gSO3) to see whether novel columns still retain flow independent chromatographic properties of non-grafted monoliths.

Attachments

Full view

To ensure the desired chromatographic characteristics of the CIM® monolithic column at large scales, monolith microstructure morphology, pore size distribution, porosity and surface ligand density should be uniform. To demonstrate the uniformity of large chromatographic monoliths we have developed new testing procedures. By fabricating smaller columns (disks) from different random  positions of larger monolith, non-cGMP compliant chromatographic testing can be applied on the same polymerization batch without affecting the cGMP compliance of large-scale chromatographic monolith. Each individual disk was thoroughly tested and the results were compared to the properties of the large monolith.

Attachments

Full view

There are many cases, where a single protein needs to be purified from a complex sample. Such proteins manifest themselves as impurities, which can affect further analysis, either by causing specific equipment malfunction or lower yield in the products. In other cases the specific protein is our molecule of interest, for example in glycomics analysis. In both cases high specificity for proteins, reproducibility and reliability is necessary. We have developed a model immunoaffinity column and 96-well plate based on an anti-fibrinogen monoclonal antibody, covalently immobilized onto CIMac™ analytical chromatographic monolith.

Attachments

Full view

There are many cases, where a single protein needs to be purified from a complex sample. Such proteins manifest themselves as impurities, which can affect further analysis, either by causing specific equipment malfunction or lower yield in the products. In other cases the specific protein is our molecule of interest, for example in glycomics analysis. In both cases high specificity for proteins, reproducibility and reliability is necessary. We have developed a model immunoaffinity column and 96-well plate based on an anti-fibrinogen monoclonal antibody, covalently immobilized onto CIMac™ HDZ analytical chromatographic monolith.

Attachments

Full view

2015

Methacrylate monoliths (CIM® monolithic columns) allow for very fast and efficient separations and exhibit very high binding capacities for extremely large bio-particles due to their large inner channel diameters and enhanced mass transfer characteristics.
Additionally, the ability to manufacture polymer monolithic materials ranging from analytical to large scale preparative/industrial columns has tremendous advantages. By ensuring the chromatographic properties are consistent over the whole size range, one can easily design and optimize a purification method on laboratory scale and transfer it to a production line with minimal to no additional modifications.

Until now the largest monolithic column had a volume of 8 L, which was large enough to serve the biopharmaceutics' market's needs. Now however, the capacity of that column is already at its upper limit.

By successfully employing the knowledge and experience from almost two decades of monolith production we have managed to overcome the size limitations and polymerize the largest convective chromatographic support made from one piece of material, a 40 L monolithic column.

Attachments

Full view

Immunoaffinity columns using antibodies as ligands against mammalian membrane proteins could be used for different applications in protein expresion control and, if a standard available, for concentration determination. Additionally these columns are ideal for polishing step of Fc fusion proteins of mammalian receptors.

Most importantly such columns could extract a significant amount of a pure membrane mammalian protein suitable for structural analyses, such as mass spec analysis of their glycans. Immunoaffinity chromatographic monoliths against MULT-1 transmembrane and RAE-1 GPI anchored glycoproteins were developed as a part of Glycomet project with the main goal to analyze the antigen glycan parts.

Two different  preactivated support were used:  hydrazide (HDZ) and carboxy imidazole (CDI).

Attachments

Full view

2014

Surface hydrophobicity/hydrophilicity of chromatographic stationary phases is one of the important characteristics that influence the chromatographic column performance. On the one hand, the surface should be highly hydrophilic to avoid nonspecific adsorption of sample molecules; on the other hand, the hydrophobic surface is crutial to e.g. separate the molecule isoforms.Therefore, fast and easy characterization method to evaluate the surface „hydrophobic/hydrophilic character" could be valuable.

First stage in the development of this method and the objective of this study was to evaluate the hydrophobicity of test set of 1 mL CIM columns with different ligand chemistries and densities. This was achieved by separation of protein mixture under hydrophobic interaction chromatography (HIC) conditions. Proteins were used since monoliths are used mainly in downstream of large biomolecules.

Moreover, since poor recovery under HIC conditions was observed on some columns, the research was additionally expanded with reversed phase chromatography (RPC) to obtain extra information about even more hydrophobic surface properties of monolithic columns. Therefore, after HIC step the RPC step followed and additional elution of proteins was achieved.

Attachments

Full view

Phosphoproteomics is a branch of proteomics that focuses on deriving a comprehensive view of the extent & dynamics of protein phosphorylation by way of identifying & characterizing proteins that contain a phosphate group as a posttranslational modification. One of the approaches for specific enrichment of phosphopeptides from complex samples is metal oxide affinity chromatography (MOAC), where the specific adsorption results from bridging bidentate bindings formed between the phosphate anions and the surface of a metal oxide, such as TiO2, ZrO2, Fe2O3, and Al2O3. In presented study, a rutile TiO2 nanoparticles were bound to a previously polymerised CIM hydroxy monoliths.

Attachments

Full view

Enrichment of phosphopeptides prior to LC-MS analysis is a crucial sample preparation step because of their low stoichiometry in biological sample, longer retention on reversed phase columns, and lower ionization efficiency compared to non-phosphorylated peptides [1].The use of metal oxides, most prominently of TiO2 enabled efficient and relatively simple phosphopeptide-enrichment. In this study a new monolithic column from BIA Separations containing immobilized TiO2-nanoparticles was tested for its ability to enrich phosphopeptides. The TiO2-column was also tested for possible carryover originating from biological samples. In conclusion, tested monolithic TiO2 columns show significant binding ability for phosphopeptides and are considered as suitable for phosphopeptide enrichment.

Attachments

Full view

Challenges in monitoring the quality of vaccine production
• Process Analytical Technology (PAT) ensures process reproducibility in bioprocessing
• A mechanism to design, analyze and control pharmaceutical manufacturing processes through the measurement of critical process parameters (CPP) which affect product quality attributes (CQA)
• Initiated by the FDA as part of the 21st Century GMP initiative in 2001 with the goal of increasing productivity
• Application of PAT in vaccine development and manufacturing is challenging due to the sample complexity and batch-to-batch variability.
• During the development of an up- and/or down-stream process of the target biomolecule, a fast, accurate and reliable analytical method is requried for determining the quantity and purity of the product intended for human use

Solution: Convective Interaction Media Monoliths
• Monoliths are chromatography media cast as a single block, inserted into a housing
• Highly inter-connected network of channels (1-2 μm) containing functionalised binding sites for large biomolecules (viruses, VLPs, pDNA, antibodies)
• Performance unaffected by increasing the flow rate or molecular size

Attachments

Full view

2013

There are two different designs of chromatographic columns concerning the flow profile. Most of today's HPLC columns belong to the group of so-called axial mode operating columns, while the radial ones with a radial flow pattern are more rare. Which type performs better depends on the particular case but it seems that the radial operating columns are attracting interest since they exhibit some beneficial features. One of the main problems of radial operating chromatographic columns is the changing of a mobile phase linear velocity over the chromatographic bed. Because of that, matrix efficiency for porous particulate supports varies by its position within the bed, and overall performance is more difficult to predict.

This problem is not present when the monolithic supports are used, since it was demonstrated that their chromatographic properties are flow unaffected even at the extreme linear velocities. This was confirmed also for the radial operating mode.

The monolith and radial flow housing were designed for extremely high flow rates, up to 70 CV/min, which is the range of the flow rates applied on membranes. This was achieved by proper monolith dimensions with the height of 55 mm, inner diameter of 6.0 mm and thickness of only 4.5 mm.

Attachments

Full view