On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2012

Objective – Influenza VLP
• Complex structure
• Different protein components
• Host cell derived lipid membrane
• ESAT6 epitope of M. tuberculosis engineered into influenza hemagglutinin [1,2]
• Optimal vaccine candidates
• Induce strong immune response [3]
• Contain no genetic information

Attachments

Full view

2011

Over the last two decades,the potential of virus-based biopharmaceuticals for application in gene therapy and vaccination brought new challenges in bioprocess development. Particularly, the downstream processing (DSP) of enveloped viruses shifted from bench-scale towards robust, scalable and cost-effective strategies to produce clinical grade viralvectors. Lenti viralvectors(LVs) hold great potential in gene therapy due to their ability to transduce non dividing cells and their capacity to sustain long-term transgene expression in several target cells, invitro and invivo1. However, despite significant progress, the quality of LV preparations, the purification and the concentration of high titers of these vectors is still cumbersome and costly. In this work, disposable membrane technologies, involving microfiltration, anion-exchange chromatography (AEXc) and a final ultrafiltration step, were the basis for the development of an optimized purification process for LV.

Attachments

Full view

2010

Over the last years, lentiviral vectors have emerged as valuable tools for transgene delivery because of their ability to transduce non-dividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the purification and concentration of high titer and high quality vector stocks is still time-consuming and scale-limited. We aimed to develop a simple and cost-effective capture purification step capable of separating the produced lentiviral vectors from the preparation originally containing a load of recombinant baculoviruses used to transiently transfect 293T producer cells. Even though recombinant baculoviruses do not present major safety concerns1, the final product (purified lentiviral vectors) should be pure enough to be tested in (pre-)clinical studies2. A capture step has been preliminarily evaluated. Both lentiviruses and baculoviruses are enveloped, thus per se prone to degradation through processing. Furthermore, both show overall surface negative charges at physiological pH3,4. As such, our rationale was to use an anion-exchange bind-elute step with enough resolution to separate the two viruses upon elution. It was likely that the difference in the overall electrostatic charges of the two viruses can be used to our advantage if a sufficiently extended salt elution gradient is used.

Attachments

Full view

Biomanufacturing of antibodies, therapeutic proteins and vaccines or gene delivery vectors (either DNA or virus based) is a very complicated process where many things can go wrong. This is even more pronounced as the target biomolecules are extremely susceptible to the environmental conditions both during cultivation (upstream processing) as well as during isolation and purification (downstream processing). One can always doubt whether we have enough information about our complex biomolecule samples to consistently develop a safe product by running a robust and efficient purification bioprocess.

By using and understanding novel technologies one can design new process analytic technology (PAT) initiatives to overcome some of these problems. Here, we present novel monolithic analytical columns — CIMac columns — that can bridge this gap. In the first example, CIMac columns were applied for monitoring the purification process of virus like particles (VLP) which are used for production of vaccines and as delivery systems in gene therapy. In the second example, the monolithic analytical columns were also applied for monitoring the fermentation process of bacteriophages.

Attachments

Full view

Avir Green Hills Biotechnology is developing innovative seasonal and pandemic influenza vaccines based on the deletion of the NS1 gene (del NS1 vaccine).The vaccine is replication-defective and applied intranasally. Recently,clinical phase I studies for H1N1 monovalent vaccine and H5N1 avian influenza vaccine were completed. Both were confirmed to be safe and immunogenic for humans. A production and purification process, which was successfully employed for the pilot-scale production of H1N1 and H5N1 influenza A vaccine virus, will be presented and compared to standard ultracentrifugation method. Details on obtained life virus yields as well as impurity removal will be given. The vaccine virus is produced in static cell culture using Vero (African Green monkey kidney) cells. After clarification the vaccine virus bulk is purified using the same(chromatography-based) scheme for all different subtypes: Concentration by tangential ultrafiltration, AEX chromatography using a CIM QA monolith, and an SEC polishing step allowing for buffer exchange. This purification scheme guarantees the thorough depletion of host cell DNA and total protein. For the ultracentrifugation approach chromatographic steps were replaced by a gradient ultracentrifugation step, comparison data are shown. In addition, an HPLC method for quantifying influenza virus in the vaccine with the use of CIM monolithic columns will be presented and the results will be compared with haemagglutination method.

Attachments

Full view

Rabies virus cause acute encephalitis. It is widely distributed around the globe and more than 55,000 people perish yearly and an additional 10 million post-exposure treatment are reported. About 95% of human deaths occur in Asia and Africa. In countries that are endemic to rabies an immense need for cost-effective large-scale production of the Rabies vaccine occurs. Achieving required quality is challenging because majority of rabies vaccines are produced in Vero cells. This makes Rabies vaccine difficult to manufacture due to low titre of vaccine with lots of residual cellular DNA and serum proteins.

The objective of this work was to improve purity of rabies vaccine regarding residual DNA presence. Different mobile phases with different pH values were explored. Moreover, to develop cost-efficient downstream process for Rabies vaccine, monolith-based purification step was performed in different stages of downstream processing. Chromatographical fractions were analyzed for efficiency of DNA removal. In addition, recovery of Rabies vaccine was monitored. Finally, knowing the optimal conditions, a step-wise gradient was used for purification of larger amount of Rabies vaccine.

Attachments

Full view

2009

Adeno-associated virus (AAV) vectors continue to hold immense promise as gene transfer vehicles for a variety of gene therapy applications. Numerous pre-clinical and human clinical studies have been undertaken with rAAV, employing several of the identified serotypes to leverage their differing tissue tropism to correct a broad spectrum of genetic diseases. Despite the advantageous characteristics of rAAV and the extensive research into pre-clinical applications, production and purification scale-up continues to limit recombinant AAV (rAAV) use in large clinical trials that require even moderate vector doses. Therefore, AGTC has developed a high-yielding, scalable rAAV production system in suspension BHK cells that employs co-infection with two hybrid rHSV-rAAV vectors to provide all cis and trans-acting rAAV elements and the requisite helper virus functions for rAAV manufacturing.

In contrast to traditional, resin-based chromatography methods for rAAV purification, we have developed a two-step chromatographic process that employs a novel anion exchange Convective Interaction Media® monolithic column (CIM® monolith, BIA Separations) capture step followed by affinity chromatography (AVB Sepharose™, GE Healthcare), which yields rAAV vector stocks in very high purity. This scalable process allows significant reduction in processing time due to the high capture step dynamic binding capacity, flow rates and resolution. The resulting overall chromatography recovery compares favorably to our first and second generation processes which used three-step, resin-based column chromatography and membrane-based two step chromatography, respectively.

The CIM QA-AVB process was scaled to accommodate 10 L suspension production runs and was successful at recovering as much as 1 × 1015 purified AAV1 DRP in a single day. The process is highly reproducible and it is applicable for the purification of multiple AAV serotypes with over 95% purity and overall yield of > 30%.

Attachments

Full view

Bacteriophages were in recent years identified as a useful potential tool for different biotechnological applications such as alternative to antibiotics, detection of pathogenic bacteria, delivery vehicles for protein and DNA vaccines and as gene therapy delivery vehicles (1). For all listed fields of use it is important that phages are highly purified with preserved biological activity. Phage and other virus purification have traditionally been carried out by CsCl density gradient ultracentrifugation, which is however difficult to be scaled-up. An alternative is chromatography already proved to be efficient for purification and concentration of certain virus types.

One of the key issues using chromatography is processing time and capacity of the resin. Novel type of chromatographic resin named monoliths was already proved to be very efficient for fast separation and purification of macromolecules as are large proteins, DNA and viruses (2,3,4).

Our aim was to investigate whether Convective Interaction Media (CIM) methacrylate monolithic columns can be implemented for purification and concentration of phage T4 (virus for E.coli). Chromatographic method using linear gradient was implemented to investigate conditions for phage elution and to establish the optimized chromatographic method applying step gradient. We analyzed phage recovery and purity together with method reproducibility.

Attachments

Full view

Avir Green Hills Biotechnology is developing innovative seasonal and pandemic influenza vaccines based on the deletion of the NS1 gene (delNS1 vaccine). The vaccine is replication-defective and applied intranasally. Currently, an H1N1 monovalent vaccine is being tested in a clinical phase I study, with an H5N1 avian influenza vaccine soon to be initiated. A production and purification process, which was successfully employed for the pilot-scale production of H1N1 and H5N1 influenza A vaccine virus, will be presented. Data on the selection of chromatographic media, relevant to eliminate downstream purification bottlenecks will also be discussed.

Details on obtained virus yields as well as impurity removal will be given. The vaccine virus is produced in static cell culture using Vero (African Green monkey kidney) cells. After clarification the vaccine virus bulk is purified using the same scheme for all different subtypes: Concentration by tangential ultra filtration, AEX chromatography using a CIM QA monolith, and an SEC polishing step allowing for buffer exchange. This purification scheme guarantees the thorough depletion of host cell DNA and total protein. In addition, an HPLC method for quantifying influenza virus in the vaccine with the use of CIM monolithic columns will be presented and the results will be compared with haemagglutination method.

Attachments

Full view

In an average influenza season, we face hundreds of thousands of influenza cases. Up to 50,000 deaths per year can be ascribed to influenza epidemics. Nevertheless, this is relatively harmless compared to the current, permanent threat of a worldwide pandemic caused by avian influenza.

AVIR Green Hills Biotechnology is developing innovative seasonal and pandemic influenza vaccines based on the deletion of the NS1 gene (ΔNS1 vaccine) [1]. The vaccine is replication-defective and applied intranasally. Currently, an H1N1 monovalent vaccine is being tested in a clinical phase I study and clinical trials with H5N1 avian influenza vaccine will follow in fall 2007.

A production process, which was successfully employed for the pilot-scale production of H1N1 and H5N1 influenza A virus is presented here. The upstream process is performed according to the specific requirements of the respective influenza subtypes. Currently, 15 L batches are produced in cell factories using Vero (African green monkey kidney) cells. The vaccine bulk is purified by using the very same scheme for all different subtypes. For purification, the cell culture supernatant is clarified by centrifugation and the virus is concentrated by tangential ultra filtration. The concentrated virus is subsequently purified in two chromatographic steps which were co-developed with BIA Separations d.o.o.: First, an anion exchange monolithic column is used. This is followed by size exclusion chromatography for polishing and buffer exchange.

This purification scheme guarantees the thorough depletion of host cell DNA and total protein, and recovers at least 25% of the infectious virus.

Attachments

Full view

2008

During last decades different methods for purification of influenza viruses have been described. Most of these methods were developed for purification of egg derived influenza virus which is still the main production system for influenza vaccine viruses. Since cell culture based technology is gaining more and more importance, the need for alternative, efficient and scaleable purification methods has risen. Chromatography is becoming a method of choice for purification of viruses. Relevance of this technique was recently demonstrated also for influenza viruses. Methacrylate monoliths are characterized by large channel diameter, high surface accessibility and convective mass transport. As a consequence they have high binding capacity for large molecules, enable high flow rates at low pressure drop and therefore increase productivity. Recently it has been proven that methacrylate monolithic columns can also be used for purification and concentration of different viruses.

It was the purpose of this work to explore possibilities for purification of influenza viruses on ion exchange methacrylate monoliths. Different subtypes of influenza A and influenza B virus were tested employing various ion exhange monolithic columns.

Attachments

Full view

During the last decade important developments in molecular medicine and adenoviral vector design have been achieved, leading to an increased use of adenoviral vectors in clinical gene therapy protocols. One of the main advantages of the adenovirus is their ability to replicate at high titres in permisive cell lines. The availability of large quantities of adenoviral vector preparations is recognized as an important limitation to pre-clinical and clinical studies. Consequently there is a global focus on large scale production of adenoviral vectors, providing high titres combined with fast, effective and reliable purification methods.

Attachments

Full view

2005

The rapidly growing interest in the area of proteomics induces intensive efforts to find robust, automated and sensitive high-throughput analytical tools. In this context, the concept of solid-phase digestion (ex. trypsin immobilization on a solid support[1]) has received great attention in the last years. Trypsin (EC 3.4.21.4) has been covalently immobilized on different monolithic supports and resulting bioreactors used as immobilized enzyme reactors (IMERs) for on-line digestion, peptide separation and peptide mapping. Bioreactors efficiencies were evaluated with different recombinant proteins after on-line digestion. The technique used for the separation and identification of peptides was high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS).

Attachments

Full view

Viruses have proven to be useful vectors for gene therapy purposes. As therapeutics for human use they must be pure and contaminant free. Traditionally, viruses are purified by complicated and time consuming methods such as CsCl density gradient centrifugation or similar. In recent years liquid chromatography has became interesting method for virus purification. It provides high level of purity required for human use and increases productivity. Traditional chromatographic supports were mostly designed for purification of proteins and as such are commonly inappropriate for viruses. Alternative to traditional chromatographic support are methacrylate monoliths (CIM monoliths), characterized by large channel diameter, high surface accessibility and convective mass transport.

The aim of this work was to characterize CIM supports for separation and possible purification of a model virus Tomato mosaic virus (ToMV) from crude plant material.

Attachments

Full view

2004

Traditionally, viruses are purified by time consuming methods such as CsCl density gradient centrifugation or similar. These methods are often inefficient and limited to small scale. In recent years different methods for virus purification, based on ion exchange, gel filtration and affinity chromatography have became popular. Recently, CIM® disk monolithic columns were used for successful concentration of two plant viruses (1) and for improved detection of two human viruses (2). Cucumber mosaic virus (CMV) and Tomato mosaic virus (ToMV) were concentrated and subsequently detected from extremely diluted samples in which they were initially undetectable. Successful concentrations of both viruses encourage us to explore the possibilities of CIM® supports for virus purification. As a model virus ToMV was selected. ToMV is a rod shaped plant virus with a typical size of 300 x 18 nm and isoelectric point at pH 4.6.

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3]. The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].
Anion-exchange CIM® (Convective Interaction Media) monolithic columns allow fast and flow unaffected separation of several biomolecules, including nucleic acids [5].

Attachments

Full view

2003

The only four drugs approved for the clinical treatment of Alzheirner’s Disease (tacrine. rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors which act by maintaining high levels of acetylcholine at the muscarinic and nicotinic receptors in the central nervous system. Human acetylcholinesterase (HuAChE) represents a widely studied target enzyme and it is still object of research for the development of new drugs as enzyme inhibitors.

In a previous paper we reported the immobilisation of AChE on a silica based chromatographic column (50 x 4.6 mm 1.0.) The yeld of immobilization and the stability of the AChE-IMER were considered satisfactory, but some problems arose. The length of the IMER and the large amount of enzyme covalently bound to the chromatographic support resulted in catalysis product long elution times and some inhibitors aspecific matrix absorption with delayed enzyme activity recovery. In order to avoid these complications and considering the high rate of AChE enzymatic reaction. we decided to reduce the dimension of the solid support for immobilization, hence the amount of immobilized enzyme, by selecting a monolithic matrix disk (12 x 3 mm I.D.).

CIM® (Convective Interaction Media) monolithic supports (Biaseparations. Lubiana) represent a novel generation of stationary phases used for liquid chromatography, bioconversions, and solid phase synthesis. As opposed to individual particles packed into chromatographic columns, CIM® supports are cast as continuous homogeneous phases and provide high rates of mass transfer at lower back pressure.

In the present work a CIMK disk with immobilised human recombinant acetylcholinesterase (HuAChE-ClM® Disk) was developed. The activity of immohilised enzyme, the long term stability and reproducibility were tested. HuAChE-CIM® disk was applied as an immobilised enzyme micro-reactor (micro-IMER) in on-line HPLC system for inhibitory potency determination of known AChE inhibitors.

Full view

Gene therapy which is becoming more and more important in human health care requires the purification of high molecular mass compounds, so called nanoparticles (e. g. viruses and plasmids). The method of choice to ensure proper purity would be chromatography.

Most of the chromatographic supports available on the market at the moment can not follow the requests for such work due to low binding capacity for large molecules, limitation with regards to the time of the separation process and requests for CIP (cleaning in place) and SIP (sanitation in place).

Monolithic supports represent a new generation of chromatographic supports. In contrast to conventional particle supports, where the void volume between individual porous particles is unavoidable, these supports consist of a single monolith highly interconnected with larger and smaller open flow-through channels. Due to the structure, molecules to be separated are transported to the active sites on the stationary phase by convection, resulting in very short separation times. This is especially true for large molecules.

In this work we will present the use of monolithic supports for the separation of different nanoparticles on analytical and preparative scales. It will be shown that monolithic supports can overcome the limitations of particle-based supports for the analytics and isolation of big molecules and represent a major step towards the safe and efficient purification or production of nanoparticles.

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA-based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods of GMO detection in food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods, for DNA isolation from food, cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anionexchange, ion-pair reverse-phased, and slalom chromatography. Of these, anionexchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view