On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2005

The rapidly growing interest in the area of proteomics induces intensive efforts to find robust, automated and sensitive high-throughput analytical tools. In this context, the concept of solid-phase digestion (ex. trypsin immobilization on a solid support[1]) has received great attention in the last years. Trypsin (EC 3.4.21.4) has been covalently immobilized on different monolithic supports and resulting bioreactors used as immobilized enzyme reactors (IMERs) for on-line digestion, peptide separation and peptide mapping. Bioreactors efficiencies were evaluated with different recombinant proteins after on-line digestion. The technique used for the separation and identification of peptides was high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS).

Attachments

Full view

2003

The only four drugs approved for the clinical treatment of Alzheirner’s Disease (tacrine. rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors which act by maintaining high levels of acetylcholine at the muscarinic and nicotinic receptors in the central nervous system. Human acetylcholinesterase (HuAChE) represents a widely studied target enzyme and it is still object of research for the development of new drugs as enzyme inhibitors.

In a previous paper we reported the immobilisation of AChE on a silica based chromatographic column (50 x 4.6 mm 1.0.) The yeld of immobilization and the stability of the AChE-IMER were considered satisfactory, but some problems arose. The length of the IMER and the large amount of enzyme covalently bound to the chromatographic support resulted in catalysis product long elution times and some inhibitors aspecific matrix absorption with delayed enzyme activity recovery. In order to avoid these complications and considering the high rate of AChE enzymatic reaction. we decided to reduce the dimension of the solid support for immobilization, hence the amount of immobilized enzyme, by selecting a monolithic matrix disk (12 x 3 mm I.D.).

CIM® (Convective Interaction Media) monolithic supports (Biaseparations. Lubiana) represent a novel generation of stationary phases used for liquid chromatography, bioconversions, and solid phase synthesis. As opposed to individual particles packed into chromatographic columns, CIM® supports are cast as continuous homogeneous phases and provide high rates of mass transfer at lower back pressure.

In the present work a CIMK disk with immobilised human recombinant acetylcholinesterase (HuAChE-ClM® Disk) was developed. The activity of immohilised enzyme, the long term stability and reproducibility were tested. HuAChE-CIM® disk was applied as an immobilised enzyme micro-reactor (micro-IMER) in on-line HPLC system for inhibitory potency determination of known AChE inhibitors.

Full view

Gene therapy which is becoming more and more important in human health care requires the purification of high molecular mass compounds, so called nanoparticles (e. g. viruses and plasmids). The method of choice to ensure proper purity would be chromatography.

Most of the chromatographic supports available on the market at the moment can not follow the requests for such work due to low binding capacity for large molecules, limitation with regards to the time of the separation process and requests for CIP (cleaning in place) and SIP (sanitation in place).

Monolithic supports represent a new generation of chromatographic supports. In contrast to conventional particle supports, where the void volume between individual porous particles is unavoidable, these supports consist of a single monolith highly interconnected with larger and smaller open flow-through channels. Due to the structure, molecules to be separated are transported to the active sites on the stationary phase by convection, resulting in very short separation times. This is especially true for large molecules.

In this work we will present the use of monolithic supports for the separation of different nanoparticles on analytical and preparative scales. It will be shown that monolithic supports can overcome the limitations of particle-based supports for the analytics and isolation of big molecules and represent a major step towards the safe and efficient purification or production of nanoparticles.

Attachments

Full view

1999

High performance membrane chromatography (HPMC) proved to be a very efficient method for fast protein separations. Recently, it was shown to be applicable also for the isocratic separation of plasmid DNAconformations. However, no study about the separation of small molecules was performed until now. In this work, we investigated the possibility of gradient and isocratic separations of small molecules with Convective Interaction Media (CIM) disks of different chemistries. We proved that it was possible to achieve efficient separations of oligonucleotides and peptides in the ion-exchange mode as well as the separation of small hydrophobic molecules in the reversed phase mode. Fairly good separation of four oligonucleotides could be achieved on the disk of 0.3 mm thickness. The effect of the gradient parameters on the resolution in the case of gradient mode was studied and compared with the separation under isocratic conditions.

It was shown that similar peak resolution can be achieved in both gradient and isocratic modes. In addition, it was found that the flow rate does not have a pronounced influence on the resolution in the flow rate range between 1 and 10 mL/min. However, it seems that the resolution with the flow rate even slightly increases as a consequence of the increased pore accessibility. In accordance with conventional particle HPLC columns, the resolution increases with the monolith thickness. On the other hand, the mobile phase composition has to be carefully adjusted to obtain optimal resolution, especially in the case of isocratic separations. Because of this feature, CIM monoliths seem to be competitive to other, commercially available stationary phases.

Attachments

Full view

Organic acids are important metabolites of several biochemical pathways in microorganisms and as such they are frequent main or by-products in different bioprocesses. Consequently, a demand for their monitoring is often present. One of the most applied methods for organic acids determination is certainly HPLC using different separation mechanisms such as reversed-phase, ion-exchange or ion-exclusion chromatography, all based on separation under isocratic flow conditions. To achieve the isocratic separation, multiple steps of adsorption-desorption process are needed and therefore conventional chromatographic columns with long layer of separation material were considered as a necessary tool for achieving this effect.

Recently, it was shown that isocratic separation could also be performed on thin monolithic layers. The isocratic separations of plasmid DNA conformers (1), oligonucleotides (2, 3) and peptides (3) in the ion-exchange mode were demonstrated as well as isocratic reversed-phase separation of a mixture of steroids was obtained (3) all on thin GMA-EDMA monoliths commercially available under trademark CIM™ (Convective Interaction Media). The results indicated the possibility of applying CIM™ monolithic columns also for isocratic separation of some other small charged molecules. Since the average analysis time using CIM™ disk monolithic columns is up to a few minutes, these supports can be a material of choice for separation of organic acids.

Attachments

Full view