On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2019

Exosomes fulfill a critical role as communicators among cells, with targeting and message content depending on their surface receptors and payload. This makes them obvious candidates for an extensive range of diagnostic, therapeutic applications and a need for a fast, robust and scalable purification procedure.

CIMmultus™ monolithic columns are designed to meet the special fractionation needs of very large biologics like exosomes.

We show examples of exosome purification from cell culture with CORNERSTONE Exosome Process Development Pack and analysis of exosomal vesicle populations by Image stream flow cytometry.

Attachments

Full view

This poster shows how Multi-Angle Light Scattering detector and Fluorescence detector couppled to PATfix analytical system can be used to track extracellular vesicles through purification process. Samples were analyzed by analytical size exclusion chromatography (SEC). On SEC cell culture components diffuze into pores of chromatographic media and are separated (mostly) based on size. Particles larger than the media pore size are excluded in the void peak. This peak represents extracellular vesicles including apoptosomes, microvesicles and exosomes as well as cell debris and aggregates.

Attachments

Full view

One of the handicaps of working with bacteriophages is the long duration required to perform plaque assays. Plaque assays also impose questions about accuracy and precision relative to the scale and experience of the persons performing and interpreting them. This poster presents a pair of high precision, high accuracy chromatography-based assays that permit determination of phage concentration in less than 1 hour. Sensitivity of UV absorbance is poor because of the low concentration of phages. However, phage sensitivity is strongly amplified by monitoring the chromatogram with either fluorescence or MALS. Fluorescence works by measuring the fluorescence emission from tryptophan residues of the phage proteins. MALS works by passing a laser beam through the sample and reading the scatter produced when it encounters a particle. Larger species generate more scatter.

Attachments

Full view

Bacteriophages represent immense potential as therapeutic agents. Many of the most compelling applications of bacteriophages involve human therapy, some pertinent to gene therapy, others involving antibiotic replacement. In bacteriophage research and therapy, most applications ask for highly purified phage suspensions, as such it is crucial to reduce proteins, endotoxins, DNA and other contaminants. The most common technique for purification is ultracentrifugation using cesium chloride gradients. This technique is elaborate, cumbersome, expensive and difficult to scale-up.
Alternative techniques for purification are usually time consuming and affect phage recovery and/or viability. In this study we present efficient two-step chromatographic purification method with binding phages to a stationary phase - Convective Interaction Media (CIM®) monoliths. The aim of the study was to develop robust, fast and effective virus purification platform that can be used for several types of bacteriophages for any application. In this work bacterial lysate with bacteriophage T4 (host E.Coli) was used.

Attachments

Full view

2014

Exosomes are nano-sized vesicles that are released by many different cell types. They are involved in the transport of a wide range of signalling molecules, including mRNA, microRNA and proteins. Exosomes have been found into body fluids and multiple roles have been ascribed to exosomes, in particular in cell signalling where it has been demonstrated their correlation to disease progression and their overexpression as specific tumour cell biomarkers, suggesting their important role in their diagnosis.

This initial screening oriented towards the separation of exosomes from a cell culture supernatant, has been developed by BIA Separations in collaboration with Exosomics Siena. Exosomes used for this study were cultivated in two different cell lines, MeWo and LNCap, and, after the harvesting, a relatively pure target molecule was obtained after several centrifugations, filtrations and batch affinity capture step with a commercial purification kit. In order to speed-up the process and bring current DSP on a higher level, a novel purification approach based on chromatography, using CIM® monolithic columns was investigated. Monolithic supports represent a new generation of chromatographic media. Due to their large inner channel diameters and enhanced mass transfer characteristics, methacrylate monoliths offer efficient and fast separation of large biomolecules like vescicles, pDNA, viruses and monoclonal antibodies. High binding capacity, good product recovery and resolution are also benefits of monoliths. Different samples, (Standard batch purified exosomes, Culture supernatant filtered, Culture supernatant non-filtered), derived from MeWo and LNCap culture media,, were screened. QA, SO3, DEAE and OH CIM 1mL tube - 6μm pore size were screened. CIM® QA - 6μm pores was chosen.

Attachments

Full view

In recent years bacteriophages were identified as a useful potential tool for different applications such as alternative to antibiotics, detection of pathogenic bacteria, delivery vehicles for protein and DNA vaccines and as gene therapy delivery vehicles. For all listed fields of use it is important that phages are highly purified with preserved biological activity. Phage and other virus purification have traditionally been carried out by CsCl2 density gradient ultracentrifugation, which is however difficult to be scaled-up. An alternative is chromatography, which already proved to be efficient for separation and purification of certain virus types. Methacrylate monoliths (CIM Convective Interaction Media® monolithic columns) were designed for purification of bionanoparticles and they already proved to be very efficient for concentration and purification of several plant and human viruses (influenza A, influenza B, adenovirus type 5, hepatitis A and others).

Our aim was to investigate whether CIM methacrylate monolithic columns can be implemented for purification of phages. Staphylococcus aureus phage VDX-10 was selected. Chromatographic support chemistry and buffer screening led to development of purification method on strong anion exchanger. Optimised single step purification method developed for S. aureus VDX-10 phage on CIM® QA monolithic column resulted in efficient removal of host cell DNA and proteins with high recovery of viable phage.

Attachments

Full view

2009

Bacteriophages were in recent years identified as a useful potential tool for different biotechnological applications such as alternative to antibiotics, detection of pathogenic bacteria, delivery vehicles for protein and DNA vaccines and as gene therapy delivery vehicles (1). For all listed fields of use it is important that phages are highly purified with preserved biological activity. Phage and other virus purification have traditionally been carried out by CsCl density gradient ultracentrifugation, which is however difficult to be scaled-up. An alternative is chromatography already proved to be efficient for purification and concentration of certain virus types.

One of the key issues using chromatography is processing time and capacity of the resin. Novel type of chromatographic resin named monoliths was already proved to be very efficient for fast separation and purification of macromolecules as are large proteins, DNA and viruses (2,3,4).

Our aim was to investigate whether Convective Interaction Media (CIM) methacrylate monolithic columns can be implemented for purification and concentration of phage T4 (virus for E.coli). Chromatographic method using linear gradient was implemented to investigate conditions for phage elution and to establish the optimized chromatographic method applying step gradient. We analyzed phage recovery and purity together with method reproducibility.

Attachments

Full view

2005

The rapidly growing interest in the area of proteomics induces intensive efforts to find robust, automated and sensitive high-throughput analytical tools. In this context, the concept of solid-phase digestion (ex. trypsin immobilization on a solid support[1]) has received great attention in the last years. Trypsin (EC 3.4.21.4) has been covalently immobilized on different monolithic supports and resulting bioreactors used as immobilized enzyme reactors (IMERs) for on-line digestion, peptide separation and peptide mapping. Bioreactors efficiencies were evaluated with different recombinant proteins after on-line digestion. The technique used for the separation and identification of peptides was high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS).

Attachments

Full view

2004

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3]. The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].
Anion-exchange CIM® (Convective Interaction Media) monolithic columns allow fast and flow unaffected separation of several biomolecules, including nucleic acids [5].

Attachments

Full view

2003

The only four drugs approved for the clinical treatment of Alzheirner’s Disease (tacrine. rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors which act by maintaining high levels of acetylcholine at the muscarinic and nicotinic receptors in the central nervous system. Human acetylcholinesterase (HuAChE) represents a widely studied target enzyme and it is still object of research for the development of new drugs as enzyme inhibitors.

In a previous paper we reported the immobilisation of AChE on a silica based chromatographic column (50 x 4.6 mm 1.0.) The yeld of immobilization and the stability of the AChE-IMER were considered satisfactory, but some problems arose. The length of the IMER and the large amount of enzyme covalently bound to the chromatographic support resulted in catalysis product long elution times and some inhibitors aspecific matrix absorption with delayed enzyme activity recovery. In order to avoid these complications and considering the high rate of AChE enzymatic reaction. we decided to reduce the dimension of the solid support for immobilization, hence the amount of immobilized enzyme, by selecting a monolithic matrix disk (12 x 3 mm I.D.).

CIM® (Convective Interaction Media) monolithic supports (Biaseparations. Lubiana) represent a novel generation of stationary phases used for liquid chromatography, bioconversions, and solid phase synthesis. As opposed to individual particles packed into chromatographic columns, CIM® supports are cast as continuous homogeneous phases and provide high rates of mass transfer at lower back pressure.

In the present work a CIMK disk with immobilised human recombinant acetylcholinesterase (HuAChE-ClM® Disk) was developed. The activity of immohilised enzyme, the long term stability and reproducibility were tested. HuAChE-CIM® disk was applied as an immobilised enzyme micro-reactor (micro-IMER) in on-line HPLC system for inhibitory potency determination of known AChE inhibitors.

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA-based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods of GMO detection in food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3].

The existing methods, for DNA isolation from food, cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anionexchange, ion-pair reverse-phased, and slalom chromatography. Of these, anionexchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].

Attachments

Full view

1999

Synthetic oligonucleotides play an important role as novel therapeutic agents.

One of the most important, but also very time-consuming steps in synthetic oligonucleotides production is their purification. Due to their high-resolution power, reversed-phase and ion-exchange chromatography are the most widely used techniques for these purposes. For the reversed-phase separations oligonucleotides need to be kept as 5'-O-dimethoxytrityl derivatives until the purification process is completed and only then the detritylation takes place. Both these steps lower the yield of the production process. In the contrary, ion-exchange chromatography offers applications to deprotected oligonucleotides directly and that is the reason why this chromatography mode is more preferred.

Convective Interaction Media (CIM) are newly developed polymerbased monolithic supports allowing high resolution separations which can be carried out within seconds in the case of analytical units - disks. This is due to predominantly convective mass transport of biomolecules between the mobile and stationary phase and very low dead volumes. Additionally, the dynamic binding capacity is not affected by high flow rates.

In this work weak (DEAE) anion-exchange CIM supports have been successfully applied for the analysis and purification of synthetic oligonucleotides.

Attachments

Full view