On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2019

This poster shows how Multi-Angle Light Scattering detector and Fluorescence detector couppled to PATfix analytical system can be used to track extracellular vesicles through purification process. Samples were analyzed by analytical size exclusion chromatography (SEC). On SEC cell culture components diffuze into pores of chromatographic media and are separated (mostly) based on size. Particles larger than the media pore size are excluded in the void peak. This peak represents extracellular vesicles including apoptosomes, microvesicles and exosomes as well as cell debris and aggregates.

Attachments

Full view

One of the handicaps of working with bacteriophages is the long duration required to perform plaque assays. Plaque assays also impose questions about accuracy and precision relative to the scale and experience of the persons performing and interpreting them. This poster presents a pair of high precision, high accuracy chromatography-based assays that permit determination of phage concentration in less than 1 hour. Sensitivity of UV absorbance is poor because of the low concentration of phages. However, phage sensitivity is strongly amplified by monitoring the chromatogram with either fluorescence or MALS. Fluorescence works by measuring the fluorescence emission from tryptophan residues of the phage proteins. MALS works by passing a laser beam through the sample and reading the scatter produced when it encounters a particle. Larger species generate more scatter.

Attachments

Full view

Bacteriophages represent immense potential as therapeutic agents. Many of the most compelling applications of bacteriophages involve human therapy, some pertinent to gene therapy, others involving antibiotic replacement. In bacteriophage research and therapy, most applications ask for highly purified phage suspensions, as such it is crucial to reduce proteins, endotoxins, DNA and other contaminants. The most common technique for purification is ultracentrifugation using cesium chloride gradients. This technique is elaborate, cumbersome, expensive and difficult to scale-up.
Alternative techniques for purification are usually time consuming and affect phage recovery and/or viability. In this study we present efficient two-step chromatographic purification method with binding phages to a stationary phase - Convective Interaction Media (CIM®) monoliths. The aim of the study was to develop robust, fast and effective virus purification platform that can be used for several types of bacteriophages for any application. In this work bacterial lysate with bacteriophage T4 (host E.Coli) was used.

Attachments

Full view

2018

CIM® chromatographic monoliths enable high 1) productivity of pDNA downstream process (DSP) due to high dynamic binding capacity for pDNA in small elution volumes and short chromatographic runs; 2) high resolution power due to convective-based mass transfer.

Sample displacement mode utilizes different relative binding affinities of components in a sample mixture and separates pDNA isoforms under overloading conditions - where sc pDNA isoform acts as a displacer of oc or linear pDNA isoform.

Attachments

Full view

2017

Preparative scale chromatographic separation of open-circular (oc) from supercoiled (sc) plasmid DNA (pDNA) isoforms has been already established on CIM® C4 with high ligand density (C4 HLD) monolithic columns with sample loading in 3.0 M ammonium sulphate (AS). The process requires high molarity of AS, increasing the overall cost of the process. Sample displacement chromatography (SDC) can be used as an alternative to decrease the AS concentration required during loading onto hydrophobic chromatographic supports. This study compares three chromatographic monoliths with different hydrophobic ligands on the surface (C4 HLD, pyridine and histamine) for the purification of different pDNA vectors in SD mode.

Attachments

Full view

2016

Since plasmid DNA (pDNA) as a pharmaceutical product has stringent requirements of purity and efficacy, one or more chromatographic steps are often used in the downstream processing train. High ligand density butyl-modified (C4 HLD) monolithic support is currently used in a polishing step of a pDNA purification process (1) and is mainly focused to supercoiled (sc) pDNA isoform separation from the open circular (oc) and linear pDNA isoform as well as for removal of remaining gDNA and RNA. The goal of the study was to compare the productivities of two variations of the polishing chromatographic process employing monoliths – classical bind-elute (BE) versus recently described (2) sample displacement purification (SDP). Classical purification requires high concentration of ammonium sulphate (AS) during loading step and elution is then achieved by descending AS gradient. SDP utilises different relative binding affinities of components in a sample mixture and separates pDNA isoforms under overloading conditions, where sc pDNA isoform acts as a displacer of oc or linear pDNA isoform.

Attachments

Full view

2014

Exosomes are nano-sized vesicles that are released by many different cell types. They are involved in the transport of a wide range of signalling molecules, including mRNA, microRNA and proteins. Exosomes have been found into body fluids and multiple roles have been ascribed to exosomes, in particular in cell signalling where it has been demonstrated their correlation to disease progression and their overexpression as specific tumour cell biomarkers, suggesting their important role in their diagnosis.

This initial screening oriented towards the separation of exosomes from a cell culture supernatant, has been developed by BIA Separations in collaboration with Exosomics Siena. Exosomes used for this study were cultivated in two different cell lines, MeWo and LNCap, and, after the harvesting, a relatively pure target molecule was obtained after several centrifugations, filtrations and batch affinity capture step with a commercial purification kit. In order to speed-up the process and bring current DSP on a higher level, a novel purification approach based on chromatography, using CIM® monolithic columns was investigated. Monolithic supports represent a new generation of chromatographic media. Due to their large inner channel diameters and enhanced mass transfer characteristics, methacrylate monoliths offer efficient and fast separation of large biomolecules like vescicles, pDNA, viruses and monoclonal antibodies. High binding capacity, good product recovery and resolution are also benefits of monoliths. Different samples, (Standard batch purified exosomes, Culture supernatant filtered, Culture supernatant non-filtered), derived from MeWo and LNCap culture media,, were screened. QA, SO3, DEAE and OH CIM 1mL tube - 6μm pore size were screened. CIM® QA - 6μm pores was chosen.

Attachments

Full view

One of the major requirements for pharmaceutical-grade pDNA is its high homogeneity, being mostly in supercoiled (sc) isoform. Chromatographic separation of sc pDNA from open coiled (oc) or linear isoform is challenging due to their similar interactions with the chromatographic phases. Promising separation efficiency of pDNA isoforms was proven on recently developed histamine modified monolithic chromatographic column in descending ammonium sulfate gradient. The aim of the study was to further optimise the chromatographic conditions for sample analysis, where all three isoforms would be baseline separated.

Attachments

Full view

In recent years bacteriophages were identified as a useful potential tool for different applications such as alternative to antibiotics, detection of pathogenic bacteria, delivery vehicles for protein and DNA vaccines and as gene therapy delivery vehicles. For all listed fields of use it is important that phages are highly purified with preserved biological activity. Phage and other virus purification have traditionally been carried out by CsCl2 density gradient ultracentrifugation, which is however difficult to be scaled-up. An alternative is chromatography, which already proved to be efficient for separation and purification of certain virus types. Methacrylate monoliths (CIM Convective Interaction Media® monolithic columns) were designed for purification of bionanoparticles and they already proved to be very efficient for concentration and purification of several plant and human viruses (influenza A, influenza B, adenovirus type 5, hepatitis A and others).

Our aim was to investigate whether CIM methacrylate monolithic columns can be implemented for purification of phages. Staphylococcus aureus phage VDX-10 was selected. Chromatographic support chemistry and buffer screening led to development of purification method on strong anion exchanger. Optimised single step purification method developed for S. aureus VDX-10 phage on CIM® QA monolithic column resulted in efficient removal of host cell DNA and proteins with high recovery of viable phage.

Attachments

Full view

2012

Monolith chromatography media coupled with metal affinity ligands proved superior to the conventional particle-based matrix as a plasmid DNA (pDNA) purification platform. By harnessing the differential affinity of pDNA, RNA. Host cell proteins and endotoxin to copper ions in the solution a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl2-induced precipitation. RNA and remaining endotoxin were subsequently processed by copper immobilized metal affinity column employing either monolith or particle-based matrix where both RNA and endotoxin were removed below detection limit with almost complete recovery of pDNA in the monolith was found to have several advantages in terms of handling feedstocks crowded with RNA in a concentration-independent manner and exhibiting flowrate-independent dynamic binding capacity for RNA. This enabled monolith-based process to be conducted at high feed concentration and flow rate. Resulting in pDNA vaccine purification at a high yield and purity and the process conditions investigated, the use of monolith column gave at least three fold higher productivity for recovery of purified pDNA as compared to the particle- based column, demonstrating its potential as a more rapid and economical platform for pDNA vaccine purification.

Attachments

Full view

The present study describes a new methodology to quantify and monitor the quality of supercoiled (sc) plasmid DHA (pDLIA), using a monolithic column based on anion-exchange chromatography. This analytical method with UV detection allows distinguishing the plasmid isoforms by a NaCl stepwise gradient. The selectivity, Linearity, accuracy, reproducibility and repeatability of the method have been evaluated, and the lower quantification and detection limits were also established. The validation was performed according to the guidelines, being demonstrated that the method is precise and accurate for a sc plasmid concentration up to 200 µg/mL. The main advance achieved by using this monolithic method is the possibility to quantify the sc plasmid in a sample containing other plasmid topologies, in a 4 minutes experiment. This work also intends to evaluate the possibility to assess the sc pDNA present in more complex samples, allowing the control of the samples recovered from different bioprocess steps.

Attachments

Full view

2010

Application of plasmid DNA for gene therapy and vaccination has gained huge interest in last two decades. Topological homogeneity and impurity content are crucial for therapeutic usage of pDNA. Major influence on achieving regulatory demands in pDNA production has downstream processing and in order to get optimal purity different purification techniques have to be included. It was demonstrated that methacrylate monoliths can be used for efficient purification process of plasmid DNA. High dynamic binding capacities and high flow rates of methacrylate monolith enabled excelent purity and productivity.

Attachments

Full view

2009

Application of plasmid DNA for gene therapy and vaccination has gained substantial interest in the last two decades. Topological homogeneity and impurity content are crucial for therapeutic usage of pDNA. Downstream processing has major influence on achieving regulatory demands in pDNA production and in order to get optimal purity different purification techniques have to be applied. It was demonstrated that methacrylate monoliths can be used for efficient purification process of plasmid DNA. High dynamic binding capacities and high flow rates of methacrylate monolith enable excellent purity and productivity.

Attachments

Full view

Bacteriophages were in recent years identified as a useful potential tool for different biotechnological applications such as alternative to antibiotics, detection of pathogenic bacteria, delivery vehicles for protein and DNA vaccines and as gene therapy delivery vehicles (1). For all listed fields of use it is important that phages are highly purified with preserved biological activity. Phage and other virus purification have traditionally been carried out by CsCl density gradient ultracentrifugation, which is however difficult to be scaled-up. An alternative is chromatography already proved to be efficient for purification and concentration of certain virus types.

One of the key issues using chromatography is processing time and capacity of the resin. Novel type of chromatographic resin named monoliths was already proved to be very efficient for fast separation and purification of macromolecules as are large proteins, DNA and viruses (2,3,4).

Our aim was to investigate whether Convective Interaction Media (CIM) methacrylate monolithic columns can be implemented for purification and concentration of phage T4 (virus for E.coli). Chromatographic method using linear gradient was implemented to investigate conditions for phage elution and to establish the optimized chromatographic method applying step gradient. We analyzed phage recovery and purity together with method reproducibility.

Attachments

Full view

2008

Anion-exchange chromatography is fundamental in downstream processing of plasmids both as a process and analytical technique. CIM anion-exchange monolithic columns have already been successfully used for the industrial scale purification of pharmaceutical grade small plasmid DNA [1].

In this work we report about the use of the newly developed monolithic analytical column intended for plasmid DNA determination in terms of its analytical performance. Higher degree of sensitivity, precision and accuracy is necessary in order to determine the quality of clinical grade DNA intended for therapeutic use. Plasmids purified from Escherichia coli fermentation exist predominantly in the supercoiled form (SC) the other two topoisomers present in the final product are mostly the open circular (OC) and linear forms [2]. Different chromatographic conditions were tested and the separation was optimized in terms of buffer and pH selection as well as in terms of gradient slope and column length. The results were compared to the results obtained with established analytical methods.

Attachments

Full view

2006

Gene therapy has already shown some great results in treatment and cure of some monogene diseases, such as diabetes. While the use of genetically modified viruses raises safety concerns, synthetic formulations of genes inserted in plasmids are regarded as safer. At present, most clinical trials involve plasmids smaller than 10 kb. However, the concern that regulation of the functioning of the gene is ensured together with the expectation of the progression of gene therapy to multigene disfunctions, like cancer or complex nevrodegenerative disfunctions (Alzheimer disease), will require the production of larger plasmids [1].

Attachments

Full view

2005

Plasmids are excellent genetic vectors and have been widely used in gene manipulation and recombinant DNA technology for a long time. In recent years, plasmids are intensively investigated for gene therapy purposes and genetic vaccination. In this case, plasmid DNA (pDNA) of high purity is required. To follow such demands, several chromatographic steps are commonly needed. In the case of buffer compatibility, columns can be connected in-line to overcome time consuming and yield lowering multiple chromatographic steps. Since each of the unit operations contributes to the dispersion, the resolution is further decreased by each chromatographic step. This drawback might be surmounted by combining several chromatography steps into a single chromatography column. This approach is known as multidimensional or conjoint liquid chromatography (CLC).

Attachments

Full view

2004

By using a combination of two CIM® tube monolithic columns, OH and DEAE chemistry, we were able to successfully purify plasmid DNA from bacterial culture without using RNase. Purified plasmid DNA is very pure, since common contaminants, such as proteins, genomic DNA, endotoxins and RNA were under the detection limit. The scale up units produced according to cGMP standard are already used for the purification of plasmid DNA for gene therapy purposes on industrial scale.

Attachments

Full view

The availability of sufficient quantities of quality DNA is always a crucial point in DNA based methods, i.e. for PCR, DNA sequencing, Southern blotting, and microarrays [1]. The same is true for the PCR-based methods for detection of genetically modified food [2]. During the production chain foods passes several physical, biological, and chemical processes, which all negatively influences on the quantity of available DNA. The phenomenon is especially expressive when high temperature treatment is performed at low pH [3]. The existing methods for DNA isolation from food cannot always fulfill the expectations of quantity and quality of isolated DNA. Furthermore they usually include 100 mg of sample and are difficult to scale-up [4]. Four major chromatographic modes are used for the separation of DNA: size-exclusion, anion-exchange, ion-pair reversephased, and slalom chromatography. Of these, anion-exchange chromatography combined with micropellicular packing is described as the most prominent technique so far [1].
Anion-exchange CIM® (Convective Interaction Media) monolithic columns allow fast and flow unaffected separation of several biomolecules, including nucleic acids [5].

Attachments

Full view

2003

Gene therapy which is becoming more and more important in human health care requires the purification of high molecular mass compounds, so called nanoparticles (e. g. viruses and plasmids). The method of choice to ensure proper purity would be chromatography.

Most of the chromatographic supports available on the market at the moment can not follow the requests for such work due to low binding capacity for large molecules, limitation with regards to the time of the separation process and requests for CIP (cleaning in place) and SIP (sanitation in place).

Monolithic supports represent a new generation of chromatographic supports. In contrast to conventional particle supports, where the void volume between individual porous particles is unavoidable, these supports consist of a single monolith highly interconnected with larger and smaller open flow-through channels. Due to the structure, molecules to be separated are transported to the active sites on the stationary phase by convection, resulting in very short separation times. This is especially true for large molecules.

In this work we will present the use of monolithic supports for the separation of different nanoparticles on analytical and preparative scales. It will be shown that monolithic supports can overcome the limitations of particle-based supports for the analytics and isolation of big molecules and represent a major step towards the safe and efficient purification or production of nanoparticles.

Attachments

Full view