On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!

Dynamic Capacity Studies of CIM (Convective Interaction Media®) Disks

There are many different chromatographic supports on market. Although main part of them are particle shaped supports, the so-called monoliths are becoming increasingly more important. Particle based supports are commonly uniform-sized of some micron with high porosity. The pores are required to increase the specific surface area and, as a consequence, to increase the binding capacity. Since the pores are closed on one side, the liquid inside them is stagnant and the movement of molecules is governed by diffusion. Therefore, to obtain a good separation and a high binding capacity, low flow rates should commonly be applied. This results in flowdependent resolution of the separation and dynamic binding capacity.

In contrast to conventional porous particles the morphological characteristics of CIM supports are characterised by a single monolithic unit that contains pores, opened on both sides. These pores are highly interconnected forming a flow-through a network. All the mobile phase is forced to run through these open pores, therefore, the mass transfer between stationary and mobile phases is based on convective flow. One of the key features of monolithic units is their pore size distribution that should enable low back pressure at high throughputs together with high specific surface area, needed for high binding capacity.

In this work, dynamic characteristics of CIM disks bearing weak anion exchange groups for binding Bovine Serum Albumin (BSA) were studied. Reproducibility was checked and protein concentration as well as the flow rate were varied. Preliminary results confirm the flow independence of the dynamic binding capacity in the whole range of applied flow rates.

Attachments