On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2022

Robust and precise chromatographic analytical methods are key for efficient development of mRNA production process. Three different analytical methods, which utilize three different column chemistries, are embedded in a ready-to-use PATfix™ mRNA analytical platform to support mRNA process development and product quantification and characterization.

Attachments

Full view

2018

The application describes separation of Ni species by assembling four weak CIM DEAE anion-exchange disks into a monolithic column. The concentrations of the Ni species eluted from the column were quantified by post-column isotope dilution inductively coupled plasma mass spectrometry (ID)-ICP-MS. The Ni binding ligands eluted under the chromatographic peaks were identified off-line by tandem electro spray mass spectrometry (ESI-MS-MS), scanning for negative ions.
The mild chromatographic conditions of the CIM DEAE disks preserved chemical species and enabled separation of negatively charged Ni complexes.4 NH4NO3 was chosen as eluent since it enabled separation of Ni species and is compatible with ICP-MS and mass spectrometry detectors.

Attachments

Full view

2013

Process Analytical Technology (PAT) is of crucial importance in the process of IgM manufacturing, especially in its optimization where fast and reliable analytical methods capable of quantitation of the corresponding recombinant IgM concentration levels in the upstream processes are required.


Convective Interaction Media CIM® strong anion exchange monolithic columns have a great advantage in comparison to particle related methods due to their separation capability based on the convective flow mechanism that proved to be particularly efficient in the separation of large IgM molecules.

Attachments

Full view