On May 12th, the biaseparations.com website will be retired and migrated tosartorius.com.Learn moreabout our combined offering today!
2010

Bacteriophages, viruses that infect bacteria, are being used as antibacterial agents, in phage display screening, as gene therapy delivery systems, and for bacteria typing. To use phages in these applications, they must be free of all impurities. A purification and concentration process was recently developed using an ion exchange monolithic column [1]. One of the key challenges faced in phage purification is the monitoring of genomic DNA (gDNA) released to the growth medium which can interfere with the various applications of phages. CIMac™ DEAE Analytical Columns can be used to monitor the fermentation process, evaluate the amount of degraded gDNA to determine the optimal fermentation endpoint and then to efficiently purify the phage particles.

Attachments

Full view

Adenovirus vectors have proven as useful tool for gene therapy, vaccine therapy and basic biology studies. The increasing importance of the recombinant adenoviruses pushes the limits of research in the field of adenovirus purification methods. There is a global focus on large scale production of adenovirus vectors, providing high titres combined with fast, effective and reliable purification methods.


Because of the physico-chemical properties adenovirus vectors possess, they can effectively be purified using ion-exchange chromatography. Here we present a simple and rapid method for adenovirus vectors purification using ion-exchange CIM ®QA chromatographic supports (Figure 1). CIM® monolithic supports are a new generation of chromatographic supports able to meet the GMP and GLP requirements in the field of virus purification.

Attachments

Full view

2008

Diluted samples of live attenuated measles and mumps virus were each loaded on CIM® DEAE Disk. Concentrated eluates of viral RNA were subjected to molecular detection by PCR. It was demonstrated that enrichment of viral RNA on a CIM® DEAE Disk prior PCR is feasible and successful.

Attachments

Full view

A mixture of 8mer, 10mer, 12mer, 14mer, 15mer and 16mer Oligodeoxynucleotides was loaded on CIM® DEAE Disk and eluted in linear gradient mode at a flow rate of 6 mL/min (17 CV/min). Separation of all nucleotides could be accomplished within 60 seconds.

Attachments

Full view

Attachments

Full view